精英家教网 > 高中数学 > 题目详情

【题目】中国共产党第十九次全国代表大会于20171018日至1024日在北京召开,会议提出“决胜全面建成小康社会”.某市积极响应开展“脱贫攻坚”,为2020年“全面建成小康社会”贡献力量.为了解该市农村“脱贫攻坚”情况,从某县调查得到农村居民2013年至2017年家庭人均纯收入(单位:百元)的数据如表:

年 份

2013

2014

2015

2016

2017

年人均纯收入百元

47

55

61

65

72

注:小康的标准是农村居民家庭年人均纯收入达到8000元.

1)求关于的线性回归方程;

2)利用(1)中的回归方程,预测2020年该县农村居民家庭年人均纯收入指标能否达到“全面建成小康社会”的标准?

附:回归直线 斜率和截距的最小二乘估计公式分别为:

【答案】1.2)能达到“全面建成小康社会”的标准

【解析】

1)由题意求出,代入公式求值,从而得到回归直线方程;

2)代入代入(1)中的回归方程,即可求得答案.

1)根据所给数据可得:

将年份得:

年 份

2013

2014

2015

2016

2017

0

1

2

年人均纯收入百元

47

55

61

65

72

1

5

12

回归方程为.

2)由(1)知将2020年代入(1)中的回归方程,得百元,

由于:

预测2020年该县农村居民家庭年人均纯收入指标能够达到全面建成小康社会的标准.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,平面底面ABCD是等边三角形,底面ABCD为梯形,且

证明:

A到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线和直线的焦点,上一点,过作抛物线的一条切线与轴交于,则外接圆面积的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了解本市居民的生活成本,甲、乙、丙三名同学利用假期分别对三个社区进行了“家庭每月日常消费额”的调查.他们将调查所得到的数据分别绘制成频率分布直方图(如图所示),记甲、乙、丙所调查数据的标准差分别为s1s2s3,则它们的大小关系为__________.(用“>”连接)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年冬,北京雾霾天数明显减少,据环保局统计三个月的空气质量,达到优良的天数超过70.重度污染的天数仅有4.主要原因是政府对治理雾霾采取了有效措施,如①减少机动车尾气排放;②实施了煤改电或煤改气工程;③关停了大量的排污企业;④部分企业季节性的停产.为了解农村地区实施煤改气工程后天然气使用情况,从某乡镇随机抽取100户,进行均用气量调查,得到的用气量数据(单位:千立方米)均在区间围内,将数据按区间列表如下:

分组

频数

频率

14

0.14

55

0.55

4

0.04

2

0.02

合计

100

1

1)求表中的值;

2)若同组中的每个数据用该组区间中点值代替,估计该乡每户月平均用气量;

3)从用量高于3千立方米的用户中任选2户,进行燃气使用的满意度调查,求这2户用气量处于不同区间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数).

(Ⅰ)讨论函数的单调性;

(Ⅱ)是否存在正实数,使得对任意,都有,若存在,求出实数的取值范围;若不存在,请说明理由;

(Ⅲ)当时, ,对恒成立,求整数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将函数图象上所有点的横坐标缩短为原来的,纵坐标不变,再向右平移个单位长度,得到函数的图象,则下列说法正确的是( )

A. 函数的一条对称轴是

B. 函数的一个对称中心是

C. 函数的一条对称轴是

D. 函数的一个对称中心是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学名著《算学启蒙》中有关于“松竹并生”的问题:松长四尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.如图,是源于其思想的一个程序框图.若输入的分别为8、2,则输出的( )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】了应对新疆暴力恐怖活动,重庆市警方从武警训练基地挑选反恐警察,从体能、射击、反应三项指标进行检测,如果这三项中至少有两项通过即可入选.假定某基地有4名武警战士(分别记为)拟参加挑选,且每人能通过体能、射击、爆破的概率分别为.这三项测试能否通过相互之间没有影响.

(1)求能够入选的概率;

(2)规定:按入选人数得训练经费,每入选1人,则相应的训练基地得到5000元的训练经费,求该基地得到训练经费的分布列与数学期望(期望精确到个位).

查看答案和解析>>

同步练习册答案