【题目】已知函数,其中.
(1)若是函数的导函数的零点,求的单调区间;
(2)若不等式对恒成立,求实数的取值范围.
【答案】(1)递增区间为,单调递减区间为;(2)
【解析】
(1)对函数f(x)求导数,利用x=1是函数f(x)导函数的零点求出a的值,再判断f(x)的单调性与单调区间;(2)求函数f(x)的导数,讨论①a≤0时f′(x)<0在x∈[1,+∞)上恒成立,得出f(x)≤f(1)=0,符合题意;②a>0时,f′(x)是x∈[1,+∞)上的单调减函数,利用f′(1)=a﹣1,讨论a≤1时,f(x)≤f(1)=0,满足题意;a>1时,易知存在x0∈[1,+∞),使得f′(x0)=0,且f(x0)>f(1)=0,不符合题意;由此求出a的取值范围.
(1)函数,其中;∴,
又是函数的导函数的零点,∴,解得,
∴,∴,且在上是单调减函数,,
∴时,,单调递增;时,,单调递减;
所以的单调递增区间为,单调递减区间为;
(2),;
①时,在上恒成立,
则是单调递减函数,且,∴恒成立,符合题意;
②当时,是上的单调减函数,且;
若,即,则在上单调递减,且,满足题意;
若,即,则易知存在,使得,
∴在单调递增,在单调递减,
∴时,存在,则不恒成立,不符合题意;
综上可知,实数的取值范围是.
科目:高中数学 来源: 题型:
【题目】某比赛为甲、乙两名运动员制订下列发球规则:规则一:投掷一枚硬币,出现正面向上,甲发球,否则乙发球;规则二:从装有个红球与个黑球的布袋中随机地取出个球,如果同色,甲发球,否则乙发球;规则三:从装有个红球与个黑球的布袋中随机地取出个球,如果同色,甲发球,否则乙发球.
其中对甲、乙公平的规则是( )
A.规则一和规则二B.规则一和规则三C.规则二和规则三D.规则二
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着移动互联网的发展,与餐饮美食相关的手机软件层出不穷.为调查某款订餐软件的商家的服务情况,统计了10次订餐“送达时间”,得到茎叶图如下:(时间:分钟)
(1)请计算“送达时间”的平均数与方差:
(2)根据茎叶图填写下表:
送达时间 | 35分组以内(包括35分钟) | 超过35分钟 |
频数 | A | B |
频率 | C | D |
在答题卡上写出,,,的值;
(3)在(2)的情况下,以频率代替概率.现有3个客户应用此软件订餐,求出在35分钟以内(包括35分钟)收到餐品的人数的分布列,并求出数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.
(1)求这组数据的众数和平均数;
(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着社会的进步与发展,中国的网民数量急剧增加.下表是中国从年网民人数及互联网普及率、手机网民人数(单位:亿)及手机网民普及率的相关数据.
年份 | 网民人数 | 互联网普及率 | 手机网民人数 | 手机网民普及率 |
2009 | ||||
2010 | ||||
2011 | ||||
2012 | ||||
2013 | ||||
2014 | ||||
2015 | ||||
2016 | ||||
2017 | ||||
2018 |
(互联网普及率(网民人数/人口总数)×100%;手机网民普及率(手机网民人数/人口总数)×100%)
(Ⅰ)从这十年中随机选取一年,求该年手机网民人数占网民总人数比值超过80%的概率;
(Ⅱ)分别从网民人数超过6亿的年份中任选两年,记为手机网民普及率超过50%的年数,求的分布列及数学期望;
(Ⅲ)若记年中国网民人数的方差为,手机网民人数的方差为,试判断与的大小关系.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆方程为,过点的直线l交椭圆于点A,B,O是坐标原点,点P满足,点N的坐标为,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2)的最小值与最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某精准扶贫帮扶单位,为帮助定点扶贫村真正脱贫,坚持扶贫同扶智相结合,帮助精准扶贫户利用互联网电商渠道销售当地特产苹果.苹果单果直径不同单价不同,为了更好的销售,现从该精准扶贫户种植的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间[50,95]内(单位:),统计的茎叶图如图所示:
(Ⅰ)按分层抽样的方法从单果直径落在[80,85),[85,90)的苹果中随机抽取6个,再从这6个苹果中随机抽取2个,求这两个苹果单果直径均在[85,90)内的概率;
(Ⅱ)以此茎叶图中单果直径出现的频率代表概率.已知该精准扶贫户有20000个约5000千克苹果待出售,某电商提出两种收购方案:
方案:所有苹果均以5.5元/千克收购;
方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径 在[50,65)内按35元/箱收购,在[65,90)内按50元/箱收购,在[90,95]内按35元/箱收购.包装箱与分拣装箱工费为5元/箱.请你通过计算为该精准扶贫户推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在长方体ABCD-A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.
(1)求异面直线AD1与EC所成角的大小;
(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com