【题目】如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.
(1)求AD边所在直线的方程;
(2)求矩形ABCD外接圆的方程.
科目:高中数学 来源: 题型:
【题目】已知二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;
(2)若f(x)在区间[2a,a+1]上不单调,求实数a的取值范围;
(3)在区间[-1,1]上,y=f(x)的图象恒在y=2x+2m+1的图象上方,试确定实数m的范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在极坐标系中,曲线C1:ρsin2θ=4cosθ,以极点为坐标原点,极轴为轴正半轴建立直角坐标系xOy,曲线C2的参数方程为 (t为参数).
(1)求C1、C2的直角坐标方程;
(2)若曲线C1与曲线C2交于A、B两点,且定点P的坐标为(2,0),求|PA||PB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知随机变量X~N(μ,σ2),且其正态曲线在(-∞,80)上是增函数,在(80,+∞)上为减函数,且P(72≤X≤88)=0.682 6.
(1)求参数μ,σ的值;
(2)求P(64<X≤72).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图:已知抛物线 C1:y2=2px (p>0),直线 l 与抛物线 C 相交于 A、B 两点,且当倾斜角为 60°的直线 l 经过抛物线 C1 的焦点 F 时,有|AB|= .
(Ⅰ)求抛物线 C 的方程;
(Ⅱ)已知圆 C2:(x﹣1)2+y2= ,是否存在倾斜角不为 90°的直线 l,使得线段 AB 被圆 C2截成三等分?若存在,求出直线 l 的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列各式:①f(|x|+1)=x2+1;② ;③f(x2﹣2x)=|x|;④f(|x|)=3x+3﹣x . 其中存在函数f(x)对任意的x∈R都成立的是( )
A.①④
B.③④
C.①②
D.①③
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为 和 .现安排甲组研发新产品A,乙组研发新产品B,设甲、乙两组的研发相互独立.
(Ⅰ)求至少有一种新产品研发成功的概率;
(Ⅱ)若新产品A研发成功,预计企业可获利润120万元;若新产品B研发成功,预计企业可获利润100万元,求该企业可获利润的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com