精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中, 是棱的中点,且.

(Ⅰ)求证: 平面

(Ⅱ)若为棱上一点,满足,求二面角的余弦值.

【答案】(1)见解析;(2)余弦值为.

【解析】试题分析:(1证明线面垂直,先找线线垂直, 所以

,再由得到线面垂直;(2)由空间向量坐标系的方法,得到两个半平面的法向量,由向量的夹角公式得到二面角的余弦值.

解析:

(Ⅰ)取中点,连接

由已知 ,故为平行四边形.

所以,因为,故.

,所以

,所以.

由已知可求, ,所以,所以.

,所以.

(Ⅱ)由(Ⅰ)可得,又

以点为原点建立空间直角坐标系(如图),可得 .

为棱的中点,得.

向量 .

由点在棱上,设 .

.

,得

因此, ,解得.

.

为平面的法向量,则

不妨令,可得为平面的一个法向量.

取平面的法向量

.

易知,二面角是锐角,所以其余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2018届江西省南昌市高三第一轮已知分别为三个内角的对边,且

Ⅰ)求

Ⅱ)若边上的中线, ,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的几何体中, 平面,在平行四边形中,

(1)求证: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为平面直角坐标系的原点,极轴为的正半轴,建立平面直角坐标系.

(1)若曲线为参数)与曲线相交于两点,求

(2)若是曲线上的动点,且点的直角坐标为,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某超市在2017年五一正式开业,开业期间举行开业大酬宾活动,规定:一次购买总额在区间内者可以参与一次抽奖根据统计发现参与一次抽奖的顾客每次购买金额分布情况如下

1求参与一次抽奖的顾客购买金额的平均数与中位数(同一组中的数据用该组区间的中点值作代表结果保留到整数);

2若根据超市的经营规律购买金额与平均利润有以下四组数据

试根据所给数据建立关于的线性回归方程并根据1)中计算的结果估计超市对每位顾客所得的利润.

参考公式 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地随着经济的发展,居民收入逐年增长.该地一建设银行统计连续五年的储蓄存款年底余额得到下表:

年份

储蓄存款

(千亿元)

为便于计算,工作人员将上表的数据进行了处理 ,得到下表:

时间

储蓄存款

关于的线性回归方程;

通过中的方程,求出关于的回归方程;

用所求回归方程预测到年年底,该地储蓄存款额可达多少?

附:线性回归方程,其中 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知长方体,直线与平面所成角为垂直于点的中点.

(1)求直线与平面所成角的正弦值;

(2)线段上是否存在点,使得二面角的余弦值为?若存在,确定点位置;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程是为参数),以该直角坐标系的原点为极点, 轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

(1)写出曲线的普通方程和直线的直角坐标方程;

(2)设点,直线与曲线相交于两点,且,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有甲、乙两个桔柚(球形水果)种植基地,已知所有采摘的桔柚的直径都在范围内(单位:毫米,以下同),按规定直径在内为优质品,现从甲、乙两基地所采摘的桔柚中各随机抽取500个,测量这些桔柚的直径,所得数据整理如下:

(1)根据以上统计数据完成下面列联表,并回答是否有以上的把握认为“桔柚直径与所在基地有关”?

(2)求优质品率较高的基地的500个桔柚直径的样本平均数 (同一组数据用该区间的中点值作代表);

(3)记甲基地直径在范围内的五个桔柚分别为,现从中任取二个,求含桔柚的概率.

附: .

查看答案和解析>>

同步练习册答案