精英家教网 > 高中数学 > 题目详情

曲线与曲线 ()关于直线对称,则直线的方程为 (      )  

A.           B.        C.        D.

D


解析:

两圆圆心关于直线对称,易求直线为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)选修4-2:矩阵与变换
若矩阵A有特征值λ1=2,λ2=-1,它们所对应的特征向量分别为e1=
1
0
e2=
0
1

(I)求矩阵A;
(II)求曲线x2+y2=1在矩阵A的变换下得到的新曲线方程.
(2)选修4-4:坐标系与参数方程
已知曲线C1的参数方程为
x=2sinθ
y=cosθ
为参数),C2的参数方程为
x=2t
y=t+1
(t
为参数)
(I)若将曲线C1与C2上所有点的横坐标都缩短为原来的一半(纵坐标不变),分别得到曲线C′1和C′2,求出曲线C′1和C′2的普通方程;
(II)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,求过极点且与C′2垂直的直线的极坐标方程.
(3)选修4-5:不等式选讲
设函数f(x)=|2x-1|+|2x-3|,x∈R,
(I)求关于x的不等式f(x)≤5的解集;
(II)若g(x)=
1
f(x)+m
的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•宣城模拟)已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=
3
3
处取得极值-
2
3
9
.记函数图象为曲线C.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2(x2,f(x2)),线段P1P2与曲线C所围成封闭图形的面积记为S1,求S1的值;
(Ⅲ) 在(Ⅱ)的条件下,设曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P2P3与曲线C所围成封闭图形的面积记为S2,…,按此方法依次做下去,即设曲线C与其在点Pn(xn,f(xn))处的切线交于另一点Pn+1(xn+1,f(xn+1)),线段PnPn+1与曲线C所围成封闭图形的面积记为Sn,试求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年安徽省宣城市六校高三第三次联考数学试卷(理科)(解析版) 题型:解答题

已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=处取得极值-.记函数图象为曲线C.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2(x2,f(x2)),线段P1P2与曲线C所围成封闭图形的面积记为S1,求S1的值;
(Ⅲ) 在(Ⅱ)的条件下,设曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P2P3与曲线C所围成封闭图形的面积记为S2,…,按此方法依次做下去,即设曲线C与其在点Pn(xn,f(xn))处的切线交于另一点Pn+1(xn+1,f(xn+1)),线段PnPn+1与曲线C所围成封闭图形的面积记为Sn,试求Sn关于n的表达式.

查看答案和解析>>

科目:高中数学 来源:宣城模拟 题型:解答题

已知三次函数f(x)=ax3+bx2+cx+d(a≠0)为R上奇函数,且在x=
3
3
处取得极值-
2
3
9
.记函数图象为曲线C.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)设曲线C与其在点P1(1,f(1))处的切线交于另一点P2(x2,f(x2)),线段P1P2与曲线C所围成封闭图形的面积记为S1,求S1的值;
(Ⅲ) 在(Ⅱ)的条件下,设曲线C与其在点P2处的切线交于另一点P3(x3,f(x3)),线段P2P3与曲线C所围成封闭图形的面积记为S2,…,按此方法依次做下去,即设曲线C与其在点Pn(xn,f(xn))处的切线交于另一点Pn+1(xn+1,f(xn+1)),线段PnPn+1与曲线C所围成封闭图形的面积记为Sn,试求Sn关于n的表达式.

查看答案和解析>>

同步练习册答案