精英家教网 > 高中数学 > 题目详情
函数y=logax+3恒过定点
 
考点:对数函数的图像与性质
专题:计算题,函数的性质及应用
分析:由函数y=logax恒过点(1,0)得函数y=logax+3恒过定点(1,3).
解答: 解:∵函数y=logax恒过点(1,0),
∴函数y=logax+3恒过定点(1,3).
故答案为:(1,3).
点评:本题考查了对数函数的性质,恒过定点(1,0),属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班有54名同学,其中会打篮球的共有36人;会打排球的人数比会打篮球的多4人;另外,这两种球都不会打的人数是都会打的人数的
1
4
还少1,问既会打篮球又会打排球的有
 
人.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=log0.5(-2x2+ax+3),若函数f(x)为偶函数,且x∈(m,n)的值域为(1,+∞),求a,m,n.

查看答案和解析>>

科目:高中数学 来源: 题型:

当k为什么实数时,方程组
3x-6y=1
5x-ky=2
的解满足x<0且y<0的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体的三视图如图所示,则它的体积为(  )
A、8-
3
B、8-
π
3
C、8-2π
D、
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+b的图象关于直线x=1对称,且方程f(x)+2x=0有两个相等的实根.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)=x2-2ax+b在闭区间[0,3]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的函数f(x)满足:对任意实数m,n,总有f(m+n)=f(m)•f(n),且当x>0时,0<f(x)<1.
(1)求f(0)的值;
(2)判断函数f(x)的单调性,并证明你的结论;
(3)如果f(-1)=2,求不等式f(
10
1-x
)<
4
f(x)
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点(3,1)和(-4,6)在直线3x-2y+a=0的同侧,则a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=x2+(m2+2)+m在(-1,1)上零点的个数为(  )
A、1B、2C、0D、不能确定

查看答案和解析>>

同步练习册答案