精英家教网 > 高中数学 > 题目详情
已知角θ的顶点与原点重合,始边与x轴的非负半轴重合,终边上一点P(-1,-2),则sin2θ 等于(  )
A、-
4
5
B、-
3
5
C、
3
5
D、
4
5
考点:任意角的三角函数的定义,二倍角的余弦
专题:三角函数的求值
分析:由条件利用任意角的三角函数的定义,求出sinθ和cosθ的值,可得2sinθcosθ的值.
解答: 解:∵角θ的终边经过点P(-1,-2),∴x=-1,y=-2,r=|OP|=
5

∴sinθ=
y
r
=
-2
5
,cosθ=
x
r
=
-1
5

则sin2θ=2sinθcosθ=2×(
-2
5
)×(
-1
5
)
=
4
5

故选:D.
点评:本题主要考查任意角的三角函数的定义,两点间的距离公式的应用,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
4-x2
,x∈[-2,0)
2-x,x∈[0,2]
则将y=f(x)的曲线绕x轴旋转一周所得几何体的体积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若幂函数y=xα在 (0,+∞)上是增函数,则α一定(  )
A、α>0B、α<0
C、α>1D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c∈R,那么下列命题中一定正确的是(  )
A、若
a
c
b
c
,则a>b
B、若a>b,c>d,则a-c>b-d
C、若a>-b,则c-a<c+b
D、若a>b,则a2>b2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,a=2
3
,b=2
2
,A=60°,则B=(  )
A、450
B、1350
C、450或1350
D、300或1500

查看答案和解析>>

科目:高中数学 来源: 题型:

设0<b<a<1,则下列不等式成立的是(  )
A、log
1
2
b<log
1
2
a<0
B、ab<b2<1
C、a2<ab<1
D、2b<2a<2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是角A、B、C的对边,
m
=(b,2a-c),
n
=(2cos2
B
2
-1,cosC),且
m
n

(1)求角B的大小;
(2)设f(x)=cos(ωx-
B
2
)+sinωx,(ω>0),且f(x)的相邻两条对称轴之间的距离为
π
2
,求f(x)在区间[0,
π
2
]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知全集U=A∪B={x∈N*|0≤x≤10},A={1,3,5,7,9},A∩∁UB={1,3,5,7},则集合B=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=
1
3
x3-x2
+1(0<x<2)的图象上任意点处切线的倾斜角为α,则α的最小值是(  )
A、
π
6
B、
4
C、
π
4
D、
6

查看答案和解析>>

同步练习册答案