½«ÇúÏßy=
1
x
£¬x=1£¬x=2ºÍy=0ËùΧ³ÉµÄƽÃæÇøÓò¼Ç×÷d£¬½«Ö±Ïßx=1£¬x=2£¬y=0ºÍy=1ËùΧ³ÉµÄÕý·½ÐÎÇøÓò¼Ç×÷D£®
£¨¢ñ£©ÔÚÖ±½Ç×ø±êƽÃæÉÏ£¬×÷³öÇøÓòDºÍd£»
£¨¢ò£©ÀûÓÃËæ»úÄ£Äâ·½·¨£¬ÎÒÃÇ¿ÉÒÔ¹ÀËãÇøÓòdµÄÃæ»ý£¬Ò²¾ÍÊÇ˵£¬ÔÚÇøÓòDÄÚËæ»ú²úÉún¸öµã£¬Êý³öÂäÔÚÇøÓòdÄÚµãµÄ¸öÊý£¬Óü¸ºÎ¸ÅÐ͹«Ê½¼ÆËãÇøÓòdµÄÃæ»ý£®Çë°´´Ë˼·£¬Éè¼ÆÒ»¸öËã·¨£¬¹ÀËãÇøÓòdµÄÃæ»ý£¬Ö»ÒªÇóд³öα´úÂ룮
Ìáʾ£ºÈôµã£¨a£¬b£©¡ÊD£¬Ôòµ±b£¼
1
a
ʱ£¬£¨a£¬b£©¡Êd£®
·ÖÎö£º£¨¢ñ£©ÔÚͬһ×ø±êϵÏ»­³öÇúÏßy=
1
x
£¬x=1£¬x=2ºÍy=0£¬´Ó¶øµÃµ½ÇøÓòd£¬ÔÙ»­³öy=1´Ó¶øµÃµ½ÇøÓòD£»
£¨¢ò£©ÀûÓÃËæ»úº¯Êý²úÉún×飨a£¬b£©£¬È»ºóÅж¨ÊÇ·ñÂú×ãb£¼
1
a
£¬½«Âú×ãµÄµãµÄ¸öÊýmͳ¼Æ³öÀ´£¬×îºó¸ù¾ÝS=
m
n
¿ÉÇó³öËùÇó£®
½â´ð£º½â£º£¨¢ñ£©   
                                
£¨¢ò£©
S¡û0
m¡û0
Read n
For I From 1 To n Step 1
    a¡ûRnd+1
    b¡ûRnd
   If  b£¼
1
a
 Then
      m¡ûm+1
   END  If
End For
S¡û
m
n

Print S
µãÆÀ£º±¾Ì⿼²éα´úÂëÓë×÷ͼ£¬Ã¿¸öʼþ·¢ÉúµÄ¸ÅÂÊÖ»Óë¹¹³É¸ÃʼþÇøÓòµÄ³¤¶È£¨Ãæ»ý»òÌå»ý£©³É±ÈÀý£¬Ôò³ÆÕâÑùµÄ¸ÅÂÊÄ£ÐÍΪ¼¸ºÎ¸ÅÐÍ£® ½âÌâʱҪÈÏÕæÉóÌ⣬ºÏÀíµØÔËÓü¸ºÎ¸ÅÐͽâ¾öʵ¼ÊÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

É躯Êýf£¨x£©=ax+
1x+b
£¨a£¬b¡ÊZ£©£¬ÇúÏßy=f£¨x£©Ôڵ㣨2£¬f£¨2£©£©´¦µÄÇÐÏß·½³ÌΪy=3£®
£¨¢ñ£©Çóf£¨x£©µÄ½âÎöʽ£¬²¢ÅжϺ¯Êýy=f£¨x£©µÄͼÏóÊÇ·ñΪÖÐÐĶԳÆͼÐΣ¿ÈôÊÇ£¬ÇëÇóÆä¶Ô³ÆÖÐÐÄ£»·ñÔò˵Ã÷ÀíÓÉ£®
£¨II£©Ö¤Ã÷£ºÇúÏßy=f£¨x£©ÉÏÈÎÒ»µãµÄÇÐÏßÓëÖ±Ïßx=1ºÍÖ±Ïßy=xËùΧÈý½ÇÐεÄÃæ»ýΪ¶¨Öµ£¬²¢Çó³ö´Ë¶¨Öµ£®
£¨III£© ½«º¯Êýy=f£¨x£©µÄͼÏóÏò×óƽÒÆÒ»¸öµ¥Î»ºóÓëÅ×ÎïÏßy=ax2£¨aΪ·Ç0³£Êý£©µÄͼÏóÓм¸¸ö½»µã£¿£¨ËµÃ÷ÀíÓÉ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¢Ùº¯Êýf(x)=-
1
x
+lgx
µÄÁãµãËùÔÚµÄÇø¼äÊÇ£¨2£¬3£©£»¢ÚÇúÏßy=4x-x3Ôڵ㣨-1£¬-3£©´¦µÄÇÐÏß·½³ÌÊÇy=x-2£»¢Û½«º¯Êýy=2x+1µÄͼÏó°´ÏòÁ¿a=£¨1£¬-1£©Æ½ÒƺóµÃµ½º¯Êýy=2x+1µÄͼÏ󣻢ܺ¯Êýy=
lo
g
(x2-1)
1
2
µÄ¶¨ÒåÓòÊÇ£¨-
2
£¬-1£©¡È£¨1£¬
2
£©¢Ý
a
b
£¾0ÊÇ
a
¡¢
b
µÄ¼Ð½ÇΪÈñ½ÇµÄ³äÒªÌõ¼þ£»ÒÔÉÏÃüÌâÕýÈ·µÄÊÇ
¢Ù¢Ú
¢Ù¢Ú
£®£¨×¢£º°ÑÄãÈÏΪÕýÈ·µÄÃüÌâµÄÐòºÅ¶¼ÌîÉÏ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2011•¸£½¨Ä£Ä⣩¸ø³öÒÔÏÂËĸö½áÂÛ£º
£¨1£©Èô¹ØÓÚxµÄ·½³Ìx-
1
x
+k=0
ÔÚx¡Ê£¨0£¬1£©Ã»ÓÐʵÊý¸ù£¬ÔòkµÄÈ¡Öµ·¶Î§ÊÇk¡Ý2
£¨2£©ÇúÏßy=1+
4-x2
(|x|¡Ü2)
ÓëÖ±Ïßy=k£¨x-2£©+4ÓÐÁ½¸ö½»µãʱ£¬ÊµÊýkµÄÈ¡Öµ·¶Î§ÊÇ(
5
12
£¬
3
4
]

£¨3£©ÒÑÖªµãP£¨a£¬b£©ÓëµãQ£¨1£¬0£©ÔÚÖ±Ïß2x-3y+1=0Á½²à£¬Ôò3b-2a£¾1£»
£¨4£©Èô½«º¯Êýf(x)=sin(2x-
¦Ð
3
)
µÄͼÏóÏòÓÒƽÒÆ?£¨?£¾0£©¸öµ¥Î»ºó±äΪżº¯Êý£¬Ôò?µÄ×îСֵÊÇ
¦Ð
12
£¬ÆäÖÐÕýÈ·µÄ½áÂÛÊÇ£º
£¨2£©£¨3£©£¨4£©
£¨2£©£¨3£©£¨4£©
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©Ñ¡ÐÞ4-4£º¾ØÕóÓë±ä»»
ÒÑÖªÇúÏßC1£ºy=
1
x
ÈÆÔ­µãÄæʱÕëÐýת45¡ãºó¿ÉµÃµ½ÇúÏßC2£ºy2-x2=2£¬
£¨I£©ÇóÓÉÇúÏßC1±ä»»µ½ÇúÏßC2¶ÔÓ¦µÄ¾ØÕóM1£»    
£¨II£©Èô¾ØÕóM2=
20
03
£¬ÇóÇúÏßC1ÒÀ´Î¾­¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2±ä»»ºóµÃµ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£®ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔÚÇúÏßC£º
x=-1+cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©ÉÏÇóÒ»µã£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×îС£¬²¢Çó³ö¸Ãµã×ø±êºÍ×îС¾àÀ룮
£¨3£©£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
½«12cm³¤µÄϸÌúÏ߽سÉÈýÌõ³¤¶È·Ö±ðΪa¡¢b¡¢cµÄÏ߶Σ¬
£¨I£©ÇóÒÔa¡¢b¡¢cΪ³¤¡¢¿í¡¢¸ßµÄ³¤·½ÌåµÄÌå»ýµÄ×î´óÖµ£»
£¨II£©ÈôÕâÈýÌõÏ߶ηֱðΧ³ÉÈý¸öÕýÈý½ÇÐΣ¬ÇóÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍµÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸