【题目】已知定点,动点在轴上运动,过点作直线交轴于点,延长至点,使.点的轨迹是曲线.
(1)求曲线的方程;
(2)若,是曲线上的两个动点,满足,证明:直线过定点;
(3)若直线与曲线交于,两点,且,,求直线的斜率的取值范围.
【答案】(1) ;(2) 直线过定点;(3)
【解析】
(1)设出动点,则的坐标可表示出,利用,可求得的关系式,即的轨迹方程.
(2)设直线 ,联立直线与(1)中所得抛物线的方程,利用韦达定理表示,进而求得即可.
(3)设出直线的方程,A,B的坐标,根据推断出,把直线与抛物线方程联立消去求得的表达式,进而求得,利用弦长公式表示出,再根据的范围,求得的范围.
(1)设动点,则,,
∵,即,化简得.
(2)设直线 ,联立.
设,则,.
又,故由题有,即.
由题意可知,故.故直线 ,恒过定点.
(3)设直线方程为,与抛物线交于点,
则由,得,即,
∴,解得,
由,
∴,
当恒成立,
.
由题意,,
可得,
即,
因为,故
解得,
∴或.
即所求的取值范围是.
科目:高中数学 来源: 题型:
【题目】设是给定的平面向量,且为非零向量,关于的分解,有如下个命题:
① 给定向量,总存在向量,使得;
② 给定不共线向量和,总存在实数和,使得;
③ 给定向量和整数,总存在单位向量和实数,使得;
④ 给定正数和,总存在单位向量和单位向量,使得;
若上述命题中的向量在同一平面内且两两不共线,则其中真命题的序号为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在棱长为1的正四面体ABCD中,M,N分别为棱AB和CD的中点,一个平面分别与棱BC,BD,AD,AC交于E,F,G,H,且MN⊥平面EFGH.给出下列六个结论:①AC⊥BD,②AB//平面EFGH,③平面ABC⊥平面EFGH,④四边形EFGH的周长为定值;⑤四边形EFGH的面积有最大值;⑥四边形EFGH一定是矩形,其中,所有正确结论的序号是_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足:,且an+1(n=1,2…)集合M={an|}中的最小元素记为m.
(1)若a1=20,写出m和a10的值:
(2)若m为偶数,证明:集合M的所有元素都是偶数;
(3)证明:当且仅当时,集合M是有限集.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆C:的右焦点为F,过点F的直线l与椭圆交于A、B两点,直线n:x=4与x轴相交于点E,点M在直线n上,且满足BM∥x轴.
(1)当直线l与x轴垂直时,求直线AM的方程;
(2)证明:直线AM经过线段EF的中点.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com