分析 利用同角三角函数的基本关系,以及三角函数在各个象限中的符号,求得2sinαcosα的值,可得sinα-cosα 的值,从而利用立方差共公式求得sin3α-cos3α的值.
解答 解:∵sinα+cosα=$\frac{1}{3}$,α∈(-$\frac{π}{2}$,$\frac{π}{2}$),∴1+2sinαcosα=$\frac{1}{9}$,∴2sinαcosα=-$\frac{8}{9}$,∴α∈(-$\frac{π}{2}$,0),
∴sinα-cosα=-$\sqrt{{(sinα-cosα)}^{2}}$=-$\sqrt{1-2sinαcosα}$=-$\frac{\sqrt{17}}{3}$,
∴sin3α-cos3α=(sinα-cosα)(sin2α+sinαcosα+cos2α)=-$\frac{\sqrt{17}}{3}$•(1-$\frac{4}{9}$)=-$\frac{5\sqrt{17}}{27}$.
点评 本题主要考查同角三角函数的基本关系、立方差公式,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com