【题目】设,函数,其导数为
(1)当时,求的单调区间;
(2)函数是否存在零点?说明理由;
(3)设在处取得最小值,求的最大值
【答案】(1)在的单调递减,在单调递增;(2)故时,存在唯一零点;(3).
【解析】
试题(1)求单调区间,只要求得导数,解不等式确定增区间,确定减区间;(2),令,通过它的导数研究的单调性,然后确定函数值,,从而说明有唯一零点(也可直接用零点存在定理确定,不必要研究单调性);(3)首先确定,由(2)的唯一零点就是的最小值点,由可把用表示出来,接着计算,把用的代数式替换后得到一个的函数,然后再利用导数的知识求得最值.
试题解析:(1)当时,,由于,且时,;时,,所以在的单调递减,在单调递增
(2),令,所以
因为,所以,所以在单调递增
因为,又
所以当时,,此时必有零点,且唯一;
当时,,而
故时,存在唯一零点
(3)由(2)可知存在唯一零点,设零点为
当时,;当时,,
故在的单调递减,在单调递增
所以当时,取得最小值,由条件可得,的最小值为
由于,所以
所以
设
则
令,得;令,得
故在的单调递增,在单调递减,所以
故的最大值是
科目:高中数学 来源: 题型:
【题目】设函数,,数列满足条件:对于,,且,并有关系式:,又设数列满足(且,).
(1)求证数列为等比数列,并求数列的通项公式;
(2)试问数列是否为等差数列,如果是,请写出公差,如果不是,说明理由;
(3)若,记,,设数列的前项和为,数列的前项和为,若对任意的,不等式恒成立,试求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①回归直线恒过样本点的中心,且至少过一个样本点;
②两个变量相关性越强,则相关系数r就越接近于1;
③将一组数据的每个数据都加一个相同的常数后,方差不变;
④在回归直线方程 中,当解释变量x增加一个单位时,预报变量平均减少0.5;
⑤在线性回归模型中,相关指数表示解释变量对于预报变量的贡献率,越接近于1,表示回归效果越好;
⑥对分类变量与,它们的随机变量的观测值来说, 越小,“与有关系”的把握程度越大.
⑦两个模型中残差平方和越小的模型拟合的效果越好.
则正确命题的个数是( )
A. 3 B. 4 C. 5 D. 6
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某射手每次射击击中目标的概率是,且各次射击的结果互不影响,假设这名射手射击3次.
(1)求恰有2次击中目标的概率;
(2)现在对射手的3次射击进行计分:每击中目标1次得1分,未击中目标得0分;若仅有2次连续击中,则额外加1分;若3次全击中,则额外加3分.记为射手射击3次后的总得分,求的概率分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的参数方程是(φ为参数,a>0),直线l的参数方程是(t为参数),曲线C与直线l有一个公共点在x轴上,以坐标原点为极点,x轴的正半轴为极轴建立坐标系.
(1)求曲线C的普通方程;
(2)若点A(ρ1,θ),B(ρ2,θ+),C(ρ3,θ+)在曲线C上,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,已知直角梯形ABCD中,,,过A作,垂足为E.现将沿AE折叠,使得,如图②.
(1)求证:;
(2)若FG分别为AE,DB的中点.
(i)求证:平面DCE;
(ii)求证:平面平面DBC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】党的十八大以来,脱贫工作取得巨大成效,全国农村贫困人口大幅减少.如图的统计图反映了2012﹣2019年我国农村贫困人口和农村贫困发生率的变化情况(注:贫困发生率=贫困人数(人)÷统计人数(人)×100%).根据统计图提供的信息,下列推断不正确的是( )
A.2012﹣2019年,全国农村贫困人口逐年递减
B.2013﹣2019年,全国农村贫困发生率较上年下降最多的是2013年
C.2012﹣2019年,全国农村贫困人口数累计减少9348万
D.2019年,全国各省份的农村贫困发生率都不可能超过0.6%
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com