【题目】已知函数
(1)讨论函数的单调性;
(2)当时,,求实数的取值范围.
【答案】(1)见解析(2)
【解析】
(1)根据题意,知的定义域,,分类讨论参数,当,,时,利用导数研究函数的单调性;
(2)由题知,所以,求时,,转化为,分类讨论,根据导数研究函数单调性,求出符合时,实数的取值范围.
解:(1)的定义域,,
当时,,;,,
即在上单调递增,在上单调递减;
当时,,即在上单调递增,
当时,,;,或,
即在和上单调递增,在上单调递减;
当时,,;,或,
即在和上单调递增,在上单调递减.
(2)由题知,所以,
当时,,所以在上单调递减,
即不满足题意;
当时,在单调递增,即,符合题意;
当时,由(1)得:
当时,即时,在单调递增,
即,符合题意;
当时,即时,在单调递减,在单调递增,
即,不合题意,舍去.
综上可知.
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,右焦点为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的方程;
(2)如图,过定点的直线交椭圆于两点,连接并延长交于,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从学生会宣传部6名成员(其中男生4人,女生2人)中,任选3人参加某省举办的“我看中国改革开放三十年”演讲比赛活动.
(1)设所选3人中女生人数为ξ,求ξ的分布列;
(2)求男生甲或女生乙被选中的概率;
(3)设“男生甲被选中”为事件A,“女生乙被选中”为事件B,求P(B)和P(B|A).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若关于某设备的使用年限(年)和所支出的维修费(万元)有如下统计资料:
若由资料知,对呈线性相关关系.
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;
(2)估计使用年限为10年时,维修费用约是多少?(精确到两位小数);
(3)计算第2年和第6年的残差.
附:回归直线的斜率和截距的最小二乘估计分别为;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知动圆经过定点,且与定直线相切.
(1)求动圆圆心的轨迹方程;
(2)已知点,过点作直线与交于,两点,过点作轴的垂线分别与直线,交于点,(为原点),求证:为线段中点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,设抛物线的准线与轴交于椭圆的右焦点,为椭圆的左焦点,椭圆的利息率为,抛物线与椭圆交于轴上方一点,连接并延长其交抛物线于点,为抛物线上一动点,且在,之间移动.
(1)当取最小值时,求的值;
(2)若的边长恰好是三个连续的自然数,当的面积取最大值时,求面积最大值及此时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.
(1)求椭圆的方程;
(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从数列中取出部分项组成的数列称为数列的“子数列”.
(1)若等差数列的公差,其子数列恰为等比数列,其中,,,求;
(2)若,,判断数列是否为的“子数列”,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】从某工厂生产的某种产品中抽取1000件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:
(1)求这1000件产品质量指标值的样本平均数和样本方差(同一组数据用该区间的中点值作代表)
(2)由频率分布直方图可以认为,这种产品的质量指标值服从正态分布,其中以近似为样本平均数,近似为样本方差.
(ⅰ)利用该正态分布,求;
(ⅱ)某用户从该工厂购买了100件这种产品,记表示这100件产品中质量指标值为于区间(127.6,140)的产品件数,利用(ⅰ)的结果,求.
附:.若,则,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com