精英家教网 > 高中数学 > 题目详情
已知函数f(x)为偶函数,满足f(x+1)=1-f(x),当x∈[0,1]时,f(x)=x,若在区间[-1,3]内,函数g(x)=f(x)-kx-k有四个零点,则实数k的取值范围是
[0,
1
4
]
[0,
1
4
]
分析:由f(x+1)=1-f(x)可得函数f(x+2)=f(x),故函数f(x)是以2为周期的周期函数.由题意可得函数y=f(x)的图象与直线y=k(x+1)在区间[-1,3]内有4个交点,根据奇偶性和周期性作出f(x)、y=k(x+1)的图象,数形结合可得实数k的取值范围.
解答:解:由f(x+1)=1-f(x)可得函数f(x+2)=1-f(x+1)=1-[1-f(x)]=f(x),故函数f(x)是以2为周期的周期函数.
函数g(x)=f(x)-kx-k有四个零点,故函数y=f(x)的图象与直线y=k(x+1)在区间[-1,3]内有4个交点.
再根据函数f(x)为偶函数,如图所示:可得0<k,且 k(3+1)≤1,求得0<k≤
1
4

故答案为 (0,
1
4
].
点评:本题主要考查方程的根的存在性以及根的个数判断,函数的奇偶性,体现了数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x2+
ax
(x≠0,常数a∈R).
(1)讨论函数f(x)的奇偶性,并说明理由;
(2)若函数f(x)在[2,+∞)上为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|x+a|-|x-a|(a≠0),h(x)=
-x2+x(x>0)
x2+x(x≤0)
,则f(x),h(x)的奇偶性依次为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=loga(1+x)-loga(1-x)(a>0且a≠1)
(1)讨论f(x)的奇偶性与单调性;
(2)若不等式|f(x)|<2的解集为{x|-
1
2
<x<
1
2
},求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•嘉定区一模)已知函数f(x)=|x|•(x-a).
(1)判断f(x)的奇偶性;
(2)设函数f(x)在区间[0,2]上的最小值为m(a),求m(a)的表达式;
(3)若a=4,证明:方程f(x)+
4x
=0有两个不同的正数解.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=3x+3-x,g(x)=
x
2
+log3(1+3-x).
(1)用定义证明:函数g(x)在区间(-∞,0]上为减函数,在区间[0,+∞)上为增函数;
(2)判断函数g(x)的奇偶性,并证明你的结论;
(3)若g(x)≤
1
2
log3f(x)+a对一切实数x恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案