分析 根据函数成立的条件即可求函数的定义域.
解答 解:(1)由$\left\{\begin{array}{l}{x+8≥0}\\{3-x≥0}\end{array}\right.$得$\left\{\begin{array}{l}{x≥-8}\\{x≤3}\end{array}\right.$.即-8≤x≤3,即y=$\sqrt{x+8}+\sqrt{3-x}$的定义域为[-8,3];
(2)由|x|-x≠0得|x|≠x,即x<0,
则$y=\frac{1}{{1-\frac{1}{{1-\frac{1}{|x|-x}}}}}$=$\frac{1}{1-\frac{1}{1-\frac{1}{-2x}}}$=$\frac{1}{1-\frac{1}{1+\frac{1}{2x}}}$,
则$\left\{\begin{array}{l}{1+\frac{1}{2x}≠0}\\{1-\frac{1}{1+\frac{1}{2x}}≠0}\\{x<0}\end{array}\right.$,即$\left\{\begin{array}{l}{x<0}\\{x≠-\frac{1}{2}}\end{array}\right.$,解得x<0且x≠-$\frac{1}{2}$,即函数的定义域为{x|x<0且x≠-$\frac{1}{2}$}.
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a<0,且b2-4ac>0 | B. | a<0,且b2-4ac≤0 | C. | a>0,且b2-4ac≤0 | D. | a<0,且b2-4ac>0 |
查看答案和解析>>
科目:高中数学 来源:2017届广东华南师大附中高三综合测试一数学(文)试卷(解析版) 题型:解答题
选修4—4:坐标系与参数方程
在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)把的参数方程化为极坐标方程 ;
(2)求与交点的极坐标()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com