精英家教网 > 高中数学 > 题目详情

【题目】已知三点O(0,0),A(﹣2,1),B(2,1),曲线C上任意一点M(x,y)满足| + |= + )+2.
(1)求曲线C的方程;
(2)动点Q(x0 , y0)(﹣2<x0<2)在曲线C上,曲线C在点Q处的切线为直线l:是否存在定点P(0,t)(t<0),使得l与PA,PB都相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

【答案】
(1)解:由 =(﹣2﹣x,1﹣y), =(2﹣x,1﹣y)可得 + =(﹣2x,2﹣2y),

∴| + |= + )+2=(x,y)(0,2)+2=2y+2.

由题意可得 =2y+2,化简可得 x2=4y.


(2)解:假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y= ,直线PB的方程是y=

∵﹣2<x0<2,∴

①当﹣1<t<0时, ,存在x0∈(﹣2,2),使得

∴l∥PA,∴当﹣1<t<0时,不符合题意;

②当t≤﹣1时,

∴l与直线PA,PB一定相交,分别联立方程组

,解得D,E的横坐标分别是

∵|FP|=﹣

=

= ×

∵x0∈(﹣2,2),△QAB与△PDE的面积之比是常数

,解得t=﹣1,

∴△QAB与△PDE的面积之比是2.


【解析】(1)用坐标表示 ,从而可得 + ,可求| + |,利用向量的数量积,结合M(x,y)满足| + |= + )+2,可得曲线C的方程;(2)假设存在点P(0,t)(t<0),满足条件,则直线PA的方程是y= ,直线PB的方程是y= 分类讨论:①当﹣1<t<0时,l∥PA,不符合题意;②当t≤﹣1时, ,分别联立方程组,解得D,E的横坐标,进而可得△QAB与△PDE的面积之比,利用其为常数,即可求得结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某校高三年级举行了一次全年级的大型考试,在数学成绩优秀和非优秀的学生中,物理、化学、总分成绩也为优秀的人数如下表所示,则我们能以99%的把握认为数学成绩优秀与物理、化学、总分成绩优秀有关系吗?

物理优秀

化学优秀

总分优秀

数学优秀

228

225

267

数学非优秀

143

156

99

:该年级此次考试中数学成绩优秀的有360,非优秀的有880.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数中,既是奇函数,又在(01)上是增函数的是()

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=+bx+c,

(1)若f(x)在(-∞,+∞)上是增函数,求b的取值范围;

(2)若f(x)在x=1处取得极值,且x[-1,2]时,f(x)<c2恒成立,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,从A1(1,0,0),A2(2,0,0),B1(0,1,0),B2(0,2,0),C1(0,0,1),C2(0,0,2)这6个点中随机选取3个点,将这3个点及原点O两两相连构成一个“立体”,记该“立体”的体积为随机变量V(如果选取的3个点与原点在同一个平面内,此时“立体”的体积V=0).

(1)求V=0的概率;
(2)求V的分布列及数学期望EV.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上且周期为2的函数,在区间[﹣1,1]上,f(x)= 其中a,b∈R.若 = ,则a+3b的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区2010年至2016年农村居民家庭人均纯收入y(单位:千元)的数据如下表:

年 份

2010

2011

2012

2013

2014

2015

2016

年份代号t

1

2

3

4

5

6

7

人均纯收入y

2.9

3.3

3.6

4.4

4.8

5.2

5.9

(1)求y关于t的回归直线方程;

(2)利用(1)中的回归方程,分析2010年至2016年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2018年农村居民家庭人均纯收入.

附:回归直线的斜率和截距的最小二乘估计公式分别

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个商场经销某种商品,根据以往资料统计,每位顾客采用的分期付款次数的分布列为:

1

2

3

4

5

0.4

0.2

0.2

0.1

0.1

商场经销一件该商品,采用1期付款,其利润为200元;采用2期或3期付款,其利润为250元;采用4期或5期付款,其利润为300元.表示经销一件该商品的利润.

(1)求购买该商品的3位顾客中,恰有2位采用1期付款的概率;

(2)求的分布列及期望

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(cosωx﹣sinωx,sinωx), =(﹣cosωx﹣sinωx,2 cosωx),设函数f(x)= +λ(x∈R)的图象关于直线x=π对称,其中ω,λ为常数,且ω∈( ,1)
(1)求函数f(x)的最小正周期;
(2)若y=f(x)的图象经过点( ,0)求函数f(x)在区间[0, ]上的取值范围.

查看答案和解析>>

同步练习册答案