分析 直接利用对数的运算法则化简表达式,然后利用基本不等式求解最值.
解答 解:x>0,y>0,lg2x+lg8y=lg2,
可得x+3y=1.
$\frac{x+y}{xy}$=$\frac{(x+y)(x+3y)}{xy}$=$\frac{{x}^{2}+3{y}^{2}+4xy}{xy}$=$\frac{{x}^{2}+3{y}^{2}}{xy}+4$≥$\frac{2\sqrt{{x}^{2}•3{y}^{2}}}{xy}+4$=$2\sqrt{3}+4$.
当且仅当x=$\sqrt{3}y$,x+3y=1,即y=$\frac{1}{3+\sqrt{3}}$=$\frac{3-\sqrt{3}}{6}$,x=$\frac{\sqrt{3}}{3+\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$时取等号.
$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.
故答案为:$2\sqrt{3}+4$.
点评 本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (-∞,0) | B. | (-∞,-2) | C. | (-2,-1) | D. | (-2,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 垂直同一条直线的两条直线 | B. | 平行同一平面的两条直线 | ||
C. | 平行同一条直线的两条直线 | D. | 和同一平面所成角相等 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com