精英家教网 > 高中数学 > 题目详情
14.已知x>0,y>0,lg2x+lg8y=lg2,则$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.

分析 直接利用对数的运算法则化简表达式,然后利用基本不等式求解最值.

解答 解:x>0,y>0,lg2x+lg8y=lg2,
可得x+3y=1.
$\frac{x+y}{xy}$=$\frac{(x+y)(x+3y)}{xy}$=$\frac{{x}^{2}+3{y}^{2}+4xy}{xy}$=$\frac{{x}^{2}+3{y}^{2}}{xy}+4$≥$\frac{2\sqrt{{x}^{2}•3{y}^{2}}}{xy}+4$=$2\sqrt{3}+4$.
当且仅当x=$\sqrt{3}y$,x+3y=1,即y=$\frac{1}{3+\sqrt{3}}$=$\frac{3-\sqrt{3}}{6}$,x=$\frac{\sqrt{3}}{3+\sqrt{3}}$=$\frac{\sqrt{3}-1}{2}$时取等号.
$\frac{x+y}{xy}$的最小值是$2\sqrt{3}+4$.
故答案为:$2\sqrt{3}+4$.

点评 本题考查基本不等式的性质与对数的运算,注意基本不等式常见的变形形式与运用,如本题中,1的代换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.函数f(x)=1-x2的定义域为R.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在R上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,对任意的a,b∈R都有f(a+b)=f(a)•f(b)且对任意的x∈R,恒有f(x)>0;
(1)求f(0);
(2)证明:函数y=f(x)在R上是增函数;
(3)若f(x)•f(2x-x2)>1,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若关于x的不等式x2+ax-c<0的解集为{x|-2<x<1},则函数g(x)=eax•x2的单调递减区间为(  )
A.(-∞,0)B.(-∞,-2)C.(-2,-1)D.(-2,0)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知$\overrightarrow a=(2,1),\overrightarrow b=(-1,3)$,向量$\overrightarrow c$满足:$\overrightarrow a•\overrightarrow c=4,\overrightarrow b•\overrightarrow c=-9$,求:
(1)向量$\overrightarrow a$在向量$\overrightarrow b$上的投影;
(2)向量$\overrightarrow c$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{3}$x3-x2-3x-1,则函数g(x)=f(x)-k恰有三个零点,则实数k的取值范围是(-10,$\frac{2}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在空间四边形ABCD中,E,F分别是AB和AC的中点,则BC和平面DEF的位置关系是(  )
A.相交B.平行C.在平面内D.异面

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.光线由点A(-1,4)射出,遇到直线l:2x-3y-6=0后被反射,已知点$B(3,\frac{62}{13})$在反射光线上,则反射光线所在的直线方程为13x-26y+85=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列条件中可以确定两条直线平行的是(  )
A.垂直同一条直线的两条直线B.平行同一平面的两条直线
C.平行同一条直线的两条直线D.和同一平面所成角相等

查看答案和解析>>

同步练习册答案