精英家教网 > 高中数学 > 题目详情
(本小题满分12分)双曲线的离心率为,右准线为
(Ⅰ)求双曲线C的方程;
(Ⅱ)已知直线与双曲线C交于不同的两点A,B,且线段AB的中点在圆上,求m的值.  
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
扇形中,半径°,在的延长线上有一动点,过点与半圆弧相切于点,且与过点所作的的垂线交于点,此时显然有CO=CD,DB=DE,问当OC多长时,直角梯形面积最小,并求出这个最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
已知椭圆的左、右焦点分别为F1、F2,短轴两个端点为A、B,且四边形F1AF2B是边长为2的正方形。
(1)求椭圆的方程;
(2)若C、D分别是椭圆长的左、右端点,动点M满足MD⊥CD,连接CM,交椭圆于点P。证明:为定值。
(3)在(2)的条件下,试问x轴上是否存异于点C的定点Q,使得以MP为直径的圆恒过直线DP、MQ的交点,若存在,求出点Q的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)双曲线的中心是原点O,它的虚轴长为,相应于焦点F(c,0)(c>0)的准线与x轴交于点A,且|OF|=3|OA|,过点F的直线与双曲线交于P、Q两点.
(1)求双曲线的方程;
(2)若=0,求直线PQ的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
用半径为R的圆形铁皮剪出一个圆心角为α的扇形,制成一个圆锥形容器,求:扇形的.圆心角多大时,容器的容积最大?并求出此时容器的最大容积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

双曲线a>0,b>0)的两个焦点为F1F2,若P为其上一点,且|PF1|=2|PF2|,则双曲线离心率的取值范围为(   )
A.(1,3)B.C.(3,+)D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线在区间上截直线所得的弦长相等且不为0,则下列描述中正确的是                                   (   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆的离心率是,则的值等于       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,则该直线的倾斜角为(    )
A.B.C.D.

查看答案和解析>>

同步练习册答案