精英家教网 > 高中数学 > 题目详情
14.求函数f(x)=$\sqrt{2{x}^{2}+x-3}+lo{g}_{3}(3+2x-{x}^{2})$的定义域.

分析 由根式内部的代数式大于等于0,对数式的真数大于0联立不等式组,求解x的取值集合得答案.

解答 解:要使原函数有意义,则$\left\{\begin{array}{l}{2{x}^{2}+x-3≥0①}\\{3+2x-{x}^{2}>0②}\end{array}\right.$,
解①得:x$≤-\frac{3}{2}$或x≥1;
解②得:-1<x<3.
取交集可得:1≤x<3.
∴函数f(x)=$\sqrt{2{x}^{2}+x-3}+lo{g}_{3}(3+2x-{x}^{2})$的定义域为[1,3).

点评 本题考查函数的定义域及其求法,考查了一元二次不等式组的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.设集合M={x|2x2-x-6<0},N={x|0<x≤4},则M∩N等于(  )
A.(0,2)B.(-$\frac{3}{2}$,0)C.(-2,3)D.(-2,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.作出函数y=$\left\{\begin{array}{l}{{x}^{2}-6x+7,(2<x≤5)}\\{-2x-2,(-4<x≤2)}\end{array}\right.$的图象,并求出其定义域和值域,写出其单调增区间和单调减区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\frac{a{x}^{2}+1}{bx}$(a,b∈N+),又f(2)<3,f(1)=2.
(1)求f(x)的解析式;
(2)当x∈[$\frac{1}{6}$,$\frac{1}{2}$]时,不等式f(x)-mx+1≥0恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.化简下列各式:
(1)$\sqrt{5-2\sqrt{6}}$+$\sqrt{7-4\sqrt{3}}$;
(2)$\sqrt{a+2\sqrt{a-1}}+\sqrt{a-2\sqrt{a-1}}$(a≥1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)的定义域是(0,2],则函数f(2x-1)的定义域是$(\frac{1}{2}$,$\frac{3}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数y1=sin2x1-$\frac{\sqrt{3}}{2}$(x1∈[0,π]),函数y2=x2+3,则(x1-x22+(y1-y22的最小值为$\frac{(π+18)^{2}}{72}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.化简:$\frac{4{a}^{\frac{2}{3}}}{{b}^{\frac{1}{3}}}$÷$\frac{-2}{3{a}^{\frac{1}{3}}{b}^{\frac{4}{3}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如图,平面中两条直线l1和l2相交于点O,对于平面上任意一点M,若p、q分别是M到直线l1和l2的距离,则称有序非负实数对(p,q)是点M的“距离坐标”.已知常数p≥0,q≥0,给出下列命题:
①若p=q=0,则“距离坐标”为(0,0)点有且仅有1个;
②若p=0,q=1,则“距离坐标”为(0,1)的点有且仅有2个;
③若p=1,q=2,则“距离坐标”为(1,2)的点有且仅有4个.
上述命题中,正确命题的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

同步练习册答案