精英家教网 > 高中数学 > 题目详情
命题:“若(x-3)2+y2≠0,则x≠3”是
 
命题(填真、假).
考点:命题的真假判断与应用
专题:简易逻辑
分析:先求出原命题的逆否命题,判断其真假,即可得出原命题的真假.
解答: 解:命题:“若(x-3)2+y2≠0,则x≠3”的逆否命题是“若x=3,则(x-3)2+y2=0”.
当x=3,y≠0时,(x-3)2+y2≠0,因此是假命题,可得原命题也是假命题.
故答案为:假.
点评:本题考查了通过判断原命题的逆否命题的真假来判断原命题的真假,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在半径为R的圆C中,已知弦AB的长为5,则
AB
AC
=(  )
A、
5
2
B、
25
2
C、
5
2
R
D、
25
2
R

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙,丙三位学生独立地解同一道题,甲做对的概率为
1
2
,乙、丙做对的概率分别为m和n(m>n),且三位学生是否做对相互独立.记ξ为这三位学生中做对该题的人数,其分布列为:
ξ  0  1  2  3
 P  
1
4
 a  b
1
24
(Ⅰ)求m,n的值;
(Ⅱ)记事件E={函数f(x)=-2x2+3ξx+1在区间[-1,1]上不单调},求P(E);
(Ⅲ)令λ=12E(ξ)-10,试计算
λ
(1-2|x|)dx的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足约束条件
3x-y-6≤0
x-y+2≥0
x≥0,y≥0
,若目标函数z=ax+by(a>0,b>0)的最大值为6,则
1
a
+
2
b
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线C的顶点在坐标原点,对称轴为y轴,若过点M(0,1)任作一直线交抛物线C于A(x1,y1),B(x2,y2)两点,且x1•x2=-4,则抛物线C的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x-4y≤-3
3x+5y≤25
x≥1
表示的平面区域为M,若直线l:y=k(x+1)上存在区域M内的点,则k的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定积分
1
-1
(|x|-1)dx
的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设复数z=
2i
-1+i
,则复数z2的实部与虚部的和为(  )
A、0B、2C、-2D、4

查看答案和解析>>

同步练习册答案