精英家教网 > 高中数学 > 题目详情

【题目】已知中心在原点的双曲线 的右焦点为 ,右顶点为 ,( 为原点)

(1)求双曲线 的方程;

(2)若直线 与双曲线恒有两个不同的交点 ,且,求 的取值范围.

【答案】(1) 双曲线 的方程为;(2) 的取值范围为.

【解析】试题分析:(1)由题意设出双曲线的方程,再由已知a和c的值求出b2的值,则双曲线C的方程可求;
(2)直接联立直线方程和双曲线方程,化为关于的方程后由二次项系数不等于0且判别式大于0求解的取值范围,然后结合得答案.

试题解析:(1)设双曲线方程为

由已知得 ,再由 ,得 ,所以双曲线 的方程为 .

(2)将 代入

.由直线 与双曲线交于不同的两点得 .①

,则

,而

于是 ,即 .解此不等式得 ,②由①②得

的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若圆)上仅有个点到直线的距离为,则实数的取值范围是( )

A. B. C. D.

【答案】B

【解析】圆心到直线距离为 所以要有个点到直线的距离为,需 ,选B.

点睛:与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.

型】单选题
束】
15

【题目】为双曲线的两个焦点,若是正三角形的三个顶点,则双曲线的渐近线方程是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆C 的一个顶点与抛物线的焦点重合, 分别是椭圆的左、右焦点,且离心率,过椭圆右焦点的直线l与椭圆C交于两点.

(1)求椭圆C的方程;

(2),求直线l的方程;

(3)是椭圆C经过原点O的弦, ,求证: 为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十八届五中全会公报指出:努力促进人口均衡发展,坚持计划生育的基本国策,完善人口发展战略,全面实施一对夫妇可生育两个孩子的政策。提高生殖健康、妇幼保健、托幼等公共服务水平。为了解适龄公务员对放开生育二胎政策的态度,某部门随机调查了200位30到40岁的公务员,得到情况如下表:

(Ⅰ)是否有99%以上的把握认为“生二胎与性别有关”,并说明理由;

(Ⅱ)将频率看作概率,现从社会上随机抽取甲、乙、丙3位30到40 岁的男公务员,求这三人中至少有一人要生二胎的概率.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次趣味校园运动会的颁奖仪式上,高一、高二、高三代表队人数分别为120人、120人、n人.为了活跃气氛,大会组委会在颁奖过程中穿插抽奖活动,并用分层抽样的方法从三个代表队中共抽取20人在前排就座,其中高二代表队有6人.

(1)求n的值;

(2)把在前排就座的高二代表队6人分别记为a,b,c,d,e,f,现随机从中抽取2人上台抽奖.求a和b至少有一人上台抽奖的概率;

(3)抽奖活动的规则是:代表通过操作按键使电脑自动产生两个[0,1]之间的均匀随机数x,y,并按如图所示的程序框图执行.若电脑显示中奖,则该代表中奖;若电脑显示谢谢,则不中奖,求该代表中奖的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,点在以为焦点的椭圆上,且构成等差数列.

求椭圆C的方程;

是过原点的直线,是与n垂直相交于点,与椭圆相交于两点的直线,,是否存在上述直线使成立?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

Ⅰ)讨论函数的单调性;

Ⅱ)若函数x=2处的切线斜率为,不等式对任意恒成立,求实数的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线的焦点在x轴上,焦距为,实轴长为2

(1)求双曲线的标准方程与渐近线方程。

(2)若点 在该双曲线上运动,且 ,求以 为相邻两边的平行四边形 的顶点 的轨迹.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线轴相交于点,点坐标为,过点作直线的垂线,交直线于点.记过三点的圆为圆.

(1)求圆的方程;

(2)求过点与圆相交所得弦长为8的直线方程.

查看答案和解析>>

同步练习册答案