精英家教网 > 高中数学 > 题目详情

已知函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3.
(1)求实数a的值;
(2)证明:当x>1时,数学公式恒成立.

(1)解:求导数可得f′(x)=a+lnx+1
∵函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3
∴f′(e)=3,∴a+lne+1=3,∴a=1,-----------------------(3分)
(2)证明:由(1)知,f(x)=x+xlnx,
,则,-----------------------(5分)
令h(x)=x-lnx-2(x>1),则
所以函数h(x)在(1,+∞)上单调递增.…(7分)
因为h(3)=1-ln3<0,h(4)=2-2ln2>0,
所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).
当1<x<x0时,h(x)<0,即g'(x)<0,
当x>x0时,h(x)>0,即g'(x)>0,…(9分)
所以函数在(1,x0)上单调递减,在(x0,+∞)上单调递增.
所以
因为x0>3,所以x>1时,恒成立 …(12分)
分析:(1)求导数,利用函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3,可得f′(e)=3,从而可求实数a的值;
(2)构造,求导函数可得,令h(x)=x-lnx-2(x>1),确定h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4),进而可得在(1,x0)上单调递减,在(x0,+∞)上单调递增,求出最小值,即可得证.
点评:本题考查导数知识的运用,考查导数的几何意义,考查函数的单调性与最值,解题时构造函数是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案