精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,椭圆C:=1(a>b>0)的离心率为,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M、N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.
(1)=1.(2)见解析
(1)解:由题意知b=.
因为离心率e=,所以.所以a=2.
所以椭圆C的方程为=1.
(2)证明:由题意可设M,N的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=x+1,①
直线QN的方程为y=x+2.②
(证法1)联立①②解得x=,y=,即T.
=1可得=8-4.
因为
=1,所以点T坐标满足椭圆C的方程,即点T在椭圆C上.
(证法2)设T(x,y).联立①②解得x0,y0.
因为=1,所以=1.整理得=(2y-3)2,所以-12y+8=4y2-12y+9,即=1.
所以点T坐标满足椭圆C的方程,即点T在椭圆C上.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的离心率为,过椭圆右焦点的直线与椭圆交于点(点在第一象限).
(1)求椭圆的方程;
(2)已知为椭圆的左顶点,平行于的直线与椭圆相交于两点.判断直线是否关于直线对称,并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
(1)求椭圆C的标准方程。
(2)过点Q(0,)的直线与椭圆交于A、B两点,与直线y=2交于点M(直线AB不经过P点),记PA、PB、PM的斜率分别为k1、k2、k3,问:是否存在常数,使得若存在,求出名的值:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知曲线C:(5-m)x2+(m-2)y2=8(m∈R).
(1)若曲线C是焦点在x轴上的椭圆,求m的取值范围;
(2)设m=4,曲线C与y轴的交点为A,B(点A位于点B的上方),直线y=kx+4与曲线C交于不同的两点M,N,直线y=1与直线BM交于点G.求证:A,G,N三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两条相交线段的四个端点都在椭圆上,其中,直线的方程为,直线的方程为

(1)若,求的值;
(2)探究:是否存在常数,当变化时,恒有

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若椭圆=1的焦距为2,求椭圆上的一点到两个焦点的距离之和.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,焦点在y轴上,若其离心率为,焦距为8,则该椭圆的方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

定义:关于x的不等式|x-A|<B的解集叫A的B邻域.
已知a+b-2的a+b邻域为区间(-2,8),其中a、b分别为椭圆+=1的长半轴长和短半轴长,若此椭圆的一焦点与抛物线y2=4x的焦点重合,则椭圆的方程为(  )
A.+=1B.+=1
C.+=1D.+=1

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆G的中心在坐标原点,长轴在x轴上,离心率为,且G上一点到G的两个焦点的距离之和为12,则椭圆G的方程为______________.

查看答案和解析>>

同步练习册答案