精英家教网 > 高中数学 > 题目详情
5.若|sinα|=sin(-π+α),则α的取值范围是{α|-π+2kπ≤α≤2kπ,k∈Z}.

分析 利用诱导公式化简|sinα|=sin(-π+α)的右边,然后可得sinα≤0,从而得到α的取值范围.

解答 解:∵|sinα|=sin(-π+α)=-sinα,
∴sinα≤0,
则α的范围为-π+2kπ≤α≤2kπ,k∈Z.
故答案为:{α|-π+2kπ≤α≤2kπ,k∈Z}

点评 本题考查运用诱导公式化简求值,考查了三角函数符号的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点做椭圆的焦点,两焦点的距离叫做椭圆的焦距.
集合P={M|MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则集合P为椭圆;
(2)若a=c,则集合P为线段;
(3)若a<c,则集合P为空集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.a1=2,an+1=an+ln(1+$\frac{1}{n}$),an=2+lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=x+$\frac{9}{x}$.
(1)判断并证明f(x)在(3,+∞)上的单调性;
(2)求函数f(x)在[6,9]上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:
(1)2lg2+lg25;
(2)3${\;}^{1+lo{g}_{3}2}$;
(3)3log22+log2$\sqrt{2}$;
(4)lg60-lg6;
(5)log280-log24-log25;
(6)log3$\frac{27}{5}$+log325-log35.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.点(1,-1)关于直线2x+3y-6=0的对称点坐标为($\frac{41}{13}$,$\frac{29}{13}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=cos(2x-$\frac{π}{3}$).
(1)若函数定义在(0,$\frac{π}{2}$)上,求函数的值域;
(2)若函数定义在R上,求不等式f(x)≥0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线y=kx+3经过M(4,2),则k=$-\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一个不透明圆锥体的正视图和侧视图(左视图)为两全等的正三角形,若将它倒立放在桌面上(即圆锥体的顶点在桌面上),则该圆锥体在桌面上从垂直位置旋转到水平位置的过程中,其在水平桌面上正投影不可能是(  )
A.
   圆形区域
B.
等腰三角形两腰与半椭圆围成的区域
C.
等腰三角形两腰与半圆围成的区域
D.
   椭圆形区域

查看答案和解析>>

同步练习册答案