精英家教网 > 高中数学 > 题目详情
若函数f(x)=sinax•cosax-sin2ax(a>0)的图象与直线y=m相切,并且切点的横坐标依次成公差为π的等差数列.
(Ⅰ)求m的值;
(Ⅱ)求f(x)的单调增区间.
分析:(Ⅰ)化简函数f(x)=sinax•cosax-sin2ax为y=
2
2
sin(2ax+
π
4
)-
1
2
,求出它的最值,图象与直线y=m相切,所以最值就是m的值;
(Ⅱ)根据周期求出a的值,然后再求函数f(x)的单调增区间.
解答:解:(Ⅰ)f(x)=sinax•cosax-sin2ax(a>0)=
1
2
sin2ax-
1-cos2ax
2
=
2
2
sin(2ax+
π
4
)-
1
2
(3分)
由题意知,m为f(x)的最大值或最小值,所以m=
2
-1
2
m=-
2
+1
2
(6分)
(Ⅱ)由题设知,函数f(x)的周期为π,
∴a=(18分)
f(x)=
2
2
sin(2x+
π
4
)-
1
2

2kπ-
π
2
≤2x+
π
4
≤2kπ+
π
2
,k∈Z
kπ-
8
≤x≤kπ+
π
8
,k∈Z

∴f(x)的单调增区间[kπ-
8
,kπ+
π
8
],k∈Z
(12分)
点评:本题考查正弦函数的单调性,等差数列的性质,三角函数的周期性及其求法,三角函数的最值,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•宁波二模)在△ABC中,角A,B,C所对的边分别为a,b,c,设函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
3
处取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•眉山一模)设函数f(x)对其定义域内的任意实数x1x2都有f(
x1+x2
2
)≥
f(x1)+f(x2)
2
,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有f(
x1+x2+…+xn
n
)≥
f(x1)+f(x2)+…+f(xn)
n
(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
AC
CB
,则f(
x1x2
1+λ
)≥
f(x1)+λf(x2)
1+λ

④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
3
3
2

其中,正确命题的序号是
①③④
①③④
(写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:宁波二模 题型:解答题

在△ABC中,角A,B,C所对的边分别为a,b,c,设函数f(x)=cosx•cos(x-A)-
1
2
cosA
(x∈R).
(Ⅰ)求函数f(x)的最小正周期和最大值;
(Ⅱ)若函数f(x)在x=
π
3
处取得最大值,求
a(cosB+cosC)
(b+c)sinA
的值.

查看答案和解析>>

科目:高中数学 来源:2012年四川省眉山市高考数学一模试卷(理科)(解析版) 题型:解答题

设函数f(x)对其定义域内的任意实数,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且
④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
其中,正确命题的序号是    (写出所有你认为正确命题的序号).

查看答案和解析>>

科目:高中数学 来源:四川省模拟题 题型:填空题

设函数f(x)对其定义域内的任意实数x1与x2都有,则称函数f(x)为上凸函数. 若函数f(x)为上凸函数,则对定义域内任意x1、x2、x3,…,xn都有(当x1=x2=x3=…=xn时等号成立),称此不等式为琴生不等式,现有下列命题:
①f(x)=lnx(x>0)是上凸函数;
②二次函数f(x)=ax2+bx+c(a≠0)是上凸函数的充要条件是a>0;
③f(x)是上凸函数,若A(x1,f(x1)),B(x2,f(x2))是f(x)图象上任意两点,点C在线段AB上,且,则
④设A,B,C是一个三角形的三个内角,则sinA+sinB+sinC的最大值是
其中,正确命题的序号是(     )(写出所有你认为正确命题的序号).

查看答案和解析>>

同步练习册答案