分析:a
1=S
1=
,a
1=0,S
2=a
1+a
2=a
2=2,a
n+1=S
n+1-S
n=
(n+1)a
n+1-
na
n,由此能求出a
n.
(2)S
n=na(n)/2=n(n-1).S
2n=2n(2n-1).0<tS
n-S
2n=tn(n-1)-2n(2n-1)=n(tn-t-4n+2)=n(tn-2t-4n+8+t-6)=nf(t,n).由此能求出t的取值范围.
解答:解:a
1=S
1=
,a
1=0,
S
2=a
1+a
2=a
2=2,
a
n+1=S
n+1-S
n=
(n+1)a
n+1-
na
n,
(n-1)a
n+1=na
n,
==…==2,
a
n=2(n-1).
(2)S
n=na(n)/2=n(n-1).
S
2n=2n(2n-1).
0<tS
n-S
2n=tn(n-1)-2n(2n-1)
=n(tn-t-4n+2)
=n(tn-2t-4n+8+t-6)
=n[t(n-2)-4(n-2)+t-4-2]
=n[(t-4)(n-2)+(t-4)-2]
=nf(t,n).
t≤4时,f(t,n)<0,
4<t时,f(t,n)=(t-4)(n-2+1-
),
f(t,2)=(t-4)•(1-
),
0<1-
=
,t>6.
t>6,n≥2时,
tS
n-S
2n=n[(t-4)(n-2)+(t-6)]>0满足要求.
因此,t的取值范围是 t>6.
点评:本题考查数列与不等式的综合,解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.