精英家教网 > 高中数学 > 题目详情
1.已知中心在原点的椭圆与双曲线有公共焦点,左、右焦点分别为F1、F2,且两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,椭圆与双曲线的离心率分别为e1、e2,则e1•e2+1的取值范围为(  )
A.(1,+∞)B.($\frac{4}{3}$,+∞)C.($\frac{6}{5}$,+∞)D.($\frac{10}{9}$,+∞)

分析 设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),由条件可得m=10,n=2c,再由椭圆和双曲线的定义可得a1=5+c,a2=5-c,(c<5),运用三角形的三边关系求得c的范围,再由离心率公式,计算即可得到所求范围.

解答 解:设椭圆和双曲线的半焦距为c,|PF1|=m,|PF2|=n,(m>n),
由于△PF1F2是以PF1为底边的等腰三角形.若|PF1|=10,
即有m=10,n=2c,
由椭圆的定义可得m+n=2a1
由双曲线的定义可得m-n=2a2
即有a1=5+c,a2=5-c,(c<5),
再由三角形的两边之和大于第三边,可得2c+2c=4c>10,
则c>$\frac{5}{2}$,即有$\frac{5}{2}$<c<5.
由离心率公式可得e1•e2=$\frac{c}{{a}_{1}}•\frac{c}{{a}_{2}}$=$\frac{{c}^{2}}{25-{c}^{2}}$=$\frac{1}{\frac{25}{{c}^{2}}-1}$,
由于1<$\frac{25}{{c}^{2}}$<4,则有$\frac{1}{\frac{25}{{c}^{2}}-1}$>$\frac{1}{3}$.
则e1•e2+1$>\frac{1}{3}+1=\frac{4}{3}$.
∴e1•e2+1的取值范围为($\frac{4}{3}$,+∞).
故选:B.

点评 本题考查椭圆和双曲线的定义和性质,考查离心率的求法,考查三角形的三边关系,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=lnx-2ax3(a>0),若|f(x)|≥$\frac{1}{2}$对于任意的x∈(0,1]恒成立,则实数a的取值范围为(  )
A.[$\frac{\sqrt{e}}{6}$,+∞)B.[$\frac{1}{6}$,$\frac{\sqrt{e}}{6}$]C.[$\frac{1}{6}$,+∞)D.[$\frac{1}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,D(0,-$\frac{\sqrt{2}}{3}$),直线l过D,且与椭圆交于M,N两点,证明:以MN为直径的圆过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.设函数f(x)=1+lgx,则f(10)=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设数列{an}的前n项和为Sn,且a1=1,an+1=1+Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)求数列{$\frac{n}{{a}_{n}}$}的前n项和Rn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.椭圆$\frac{x^2}{36}$+$\frac{y^2}{16}$=1上一点M到一个焦点的距离是5,则它到另一个焦点的距离是7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆中心E在坐标原点,焦点在坐标轴上,且经过A(-2,0)、B(2,0)、$C({1,\frac{3}{2}})$三点.
(1)求椭圆E的方程:
(2)若点D为椭圆E上不同于A、B的任意一点,F(-1,0),H(1,0),当△DFH内切圆的面积最大时,求内切圆圆心的坐标;
(3)若直线l:y=k(x-1)(k≠0)与椭圆E交于M、N两点,证明直线AM与直线BN的交点在直线x=4上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:
零件的个数x(个)2345
加工的时间y(小时)2.5344.5
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程;
(3)试预测加工10个零件需要多少时间?(注:$\stackrel{∧}{b}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\stackrel{∧}{a}$=$\stackrel{∧}{y}$-$\stackrel{∧}{b}$$\overline{x}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合M={1,2,3},N={2,3},则(  )
A.M=NB.M∩N=∅C.M⊆ND.N?M

查看答案和解析>>

同步练习册答案