设A是如下形式的2行3列的数表,
a |
b |
c |
d |
e |
f |
满足性质P:a,b,c,d,e,f,且a+b+c+d+e+f=0
记为A的第i行各数之和(i=1,2), 为A的第j列各数之和(j=1,2,3)记为中的最小值。
(1)对如下表A,求的值
1 |
1 |
-0.8 |
0.1 |
-0.3 |
-1 |
(2)设数表A形如
1 |
1 |
-1-2d |
d |
d |
-1 |
其中,求的最大值
(3)对所有满足性质P的2行3列的数表A,求的最大值。
【解析】(1)因为,,所以
(2),
因为,所以,
所以
当d=0时,取得最大值1
(3)任给满足性质P的数表A(如图所示)
a |
b |
c |
d |
e |
f |
任意改变A的行次序或列次序,或把A中的每个数换成它的相反数,所得数表仍满足性质P,并且,因此,不妨设,,
由得定义知,,,,
从而
所以,,由(2)知,存在满足性质P的数表A使,故的最大值为1
【考点定位】此题作为压轴题难度较大,考查学生分析问题解决问题的能力,考查学生严谨的逻辑思维能力
科目:高中数学 来源: 题型:
a | b | c |
d | e | f |
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
1 | 1 | -1-2d |
d | d | -1 |
查看答案和解析>>
科目:高中数学 来源:2012年普通高等学校招生全国统一考试北京卷数学文科 题型:044
设A是如下形式的2行3列的数表,
满足性质P:a,b,c,d,e,f∈[-1,1],且a+b+c+d+e+f=0.
记ri(A)为A的第i行各数之和(i=1,2),Cj(A)为第j列各数之和(j=1,2,3);记k(A)为|r1(A)|,|r2(A)|,|c1(A)|,|c2(A)|,|c3(A)|中的最小值.
(Ⅰ)对如下数表A,求k(A)的值
(Ⅱ)设数表A形如
其中-1≤d≤0.求k(A)的最大值;
(Ⅲ)对所有满足性质P的2行3列的数表A,求k(A)的最大值
查看答案和解析>>
科目:高中数学 来源:高考真题 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012年北京市高考数学试卷(文科)(解析版) 题型:解答题
a | b | c |
d | e | f |
1 | 1 | -0.8 |
0.1 | -0.3 | -1 |
1 | 1 | -1-2d |
d | d | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com