精英家教网 > 高中数学 > 题目详情

【题目】某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图(1)的一条折线表示;西红柿的种植成本与上市时间的关系用图(2)的抛物线段表示.

(1)写出图(1)表示的市场售价与时间的函数关系式写出图(2)表示的种植成本与时间的函数关系式

(2)认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/kg,时间单位:天.)

【答案】(1) ;(2) 从2月1日开始的第50天时,上市的西红柿纯收益最大。

【解析】

(1)根据图像写出解析式即可;

(2)得到,分两段求得各段的最大值,再比较大小可得分段函数的最大值.

解:(1)由图(1)可得市场售价与时间的函数关系为

由图(2)可得种植成本与时间的函数关系为

(2)设时刻的纯收益为,则由题意得

时,配方得到

所以,当时,取得区间上的最大值为100;

时,配方整理得到:

所以,当时,取得区间上的最大值为

综上,在区间上的最大值为100,此时

即从2月1日开始的第50天时,上市的西红柿纯收益最大。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】根据以往的经验,某工程施工期间的将数量X(单位:mm)对工期的影响如下表:

降水量X

X<300

300≤X<700

700≤X<900

X≥900

工期延误天数Y

0

2

6

10

历年气象资料表明,该工程施工期间降水量X小于300,700,900的概率分别为0.3,0.7,0.9,求:
(1)工期延误天数Y的均值与方差;
(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2019年是中华人民共和国成立70周年,某校党支部举办了一场“我和我的祖国”知识竞赛,满分100分,回收40份答卷,成绩均落在区间内,将成绩绘制成如下的频率分布直方图.

1)估计知识竞赛成绩的中位数和平均数;

2)从分数段中,按分层抽样随机抽取5份答卷,再从对应的党员中选出3位党员参加县级交流会,求选出的3位党员中有2位成绩来自于分数段的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,抛物线C1:x2=4y,C2:x2=﹣2py(p>0),点M(x0 , y0)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x0=1﹣ 时,切线MA的斜率为﹣

(1)求P的值;
(2)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点,直线,圆.

(Ⅰ)求的取值范围,并求出圆心坐标;

(Ⅱ)若圆的半径为1,过点作圆的切线,求切线的方程;

(Ⅲ)有一动圆的半径为1,圆心在上,若动圆上存在点,使,求圆心的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三棱锥中, 互相垂直, 是线段上一动点,若直线与平面所成角的正切的最大值是,则三棱锥的外接球的表面积是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51.

(1)当一次订购量为多少个时,零件的实际出厂单价恰降为51?

(2)设一次订购量为个,零件的实际出厂单价为.写出函数的表达式;

(3)当销售商一次订购500个零件时,该厂获得的利润是多少元?如果订购1000个,利润又是多少元?(工厂售出一个零件的利润=实际出厂单价-成本)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某建材商场国庆期间搞促销活动,规定:顾客购物总金额不超过800元,不享受任何折扣;如果顾客购物总金额超过800元,则超过800元部分享受一定的折扣优惠,并按下表折扣分别累计计算:

可以享受折扣优惠金额

折扣率

不超过500元的部分

超过500元的部分

若某顾客在此商场获得的折扣金额为50元,则此人购物实际所付金额为  

A.1500元B.1550元C.1750元D.1800元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数yfx)是偶函数,当x0时,;当x[3,﹣1]时,记fx)的最大值为m,最小值为n,则mn________

查看答案和解析>>

同步练习册答案