精英家教网 > 高中数学 > 题目详情

【题目】如图,曲线Γ由曲线C1 (a>b>0,y≤0)和曲线C2 (a>0,b>0,y>0)组成,其中点F1 , F2为曲线C1所在圆锥曲线的焦点,点F3 , F4为曲线C2所在圆锥曲线的焦点,
(Ⅰ)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;
(Ⅱ)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;
(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.

【答案】解:(Ⅰ)∵F2(2,0),F3(﹣6,0),∴ a 则曲线Γ的方程为 (y>0)
(Ⅱ)曲线C2的渐近线为y=± ,如图,设直线l:y=
2x2﹣2mx+(m2﹣a2)=0
△=(2m)2﹣42(m2﹣a2)=8a2﹣4m2>0
又由数形结合知m≥a,
设点A(x1 , y1),B(x2 , y2),M(x0 , y0)则

,即点M在直线y=﹣ 上.
(Ⅲ)由(Ⅰ)知,曲线C1 ,点F4(6,0).
设直线l1的方程为x=ny+6(n>0)
(4n2+5)y2+48ny+64=0
△=(48n)2﹣4×64(4n2+5)>0n2>1
设C(x3 , y3),D(x4 , y4)由韦达定理:
|y3﹣y4|=
sCDF1= |F1F4|×|y3﹣y4|=
令t= ,∴n2=t2+1,sCDF1=64 ×
∵t>0,∴ ,当且仅当t= 即n= 时等号成立
∴n= 时,△CDF1面积的最大值
【解析】(Ⅰ)由F2(2,0),F3(﹣6,0),可得) a(Ⅱ)曲线C2的渐近线为± ,如图,设点A(x1 , y1),B(x2 , y2),M(x0 , y0),设直线l:y= ,与椭圆方程联立化为2x2﹣2mx+(m2﹣a2)=0,利用△>0,根与系数的关系、中点坐标公式,只要证明y0=﹣ 即可.(Ⅲ)设直线l1的方程为x=ny+6(n>0).与椭圆方程联立可得(5+4n2)y2+48ny+64=0,利用根与系数的关系、弦长公式、三角形的面积计算公式、基本不等式的性质即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a是常数).
(1)求函数f(x)的最小正周期;
(2)若a=0,作出y=f(x)在[﹣π,π]上的图象;
(3)若x∈[﹣ ]时,f(x)的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从一批柚子中,随机抽取100个,获得其重量(单位:克)数据按照区间进行分组,得到概率分布直方图,如图所示.

(1)根据频率分布直方图计算抽取的100个柚子的重量众数的估计值.

(2)用分层抽样的方法从重量在的柚子中共抽取5个,其中重量在的有几个?

(3)在(2)中抽出的5个柚子中,任取2人,求重量在的柚子最多有1个的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在-岁之间的人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:.把年龄落在区间内的人分别称为“青少年”和“中老年”.

关注

不关注

合计

青少年

中老年

合计

(1)根据频率分布直方图求样本的中位数保留两位小数和众数;

(2)根据已知条件完成列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)求函数的单调区间;

(2),当时,求函数的最大值;

(3),且,比较:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,若n=4时,则输出的结果为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和为Sn , 且满足4nSn=(n+1)2an(n∈N*).a1=1
(Ⅰ)求an
(Ⅱ)设bn= ,数列{bn}的前n项和为Tn , 求证:Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在正三棱柱ABCA1B1C1中,AB=2,AA1=2,由顶点B沿棱柱侧面(经过棱AA1)到达顶点C1,与AA1的交点记为M.求:

(1)三棱柱侧面展开图的对角线长;

(2)从B经M到C1的最短路线长及此时的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.

查看答案和解析>>

同步练习册答案