精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)是定义在R上的奇函数,已知x≥0时,f(x)=x(2-x).
(1)求函数f(x)的解析式.
(2)画出奇函数f(x)的图象.

分析 (1)当x<0时,-x>0,故f(-x)=-x(2+x),从而利用奇函数得f(x)=x(2+x),从而写出解析式;
(2)分段作出函数的图象即可.

解答 解:(1)当x<0时,-x>0,
则f(-x)=-x(2+x),
∵函数是奇函数,
∴f(-x)=-f(x),
∴f(x)=-f(-x)=x(2+x)
∴函数f(x)的解析式为$f(x)=\left\{\begin{array}{l}x(2-x),(x≥0)\\ x(2+x),(x<0)\end{array}\right.$;
(2)作其图象如下,

点评 本题考查了函数的奇偶性的应用及学生的作图能力,注意分段作出函数的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图,线段AB过x轴正半轴上一定点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A,O,B三点作抛物线C.
(1)求抛物线C的标准方程;
(2)已知点P(n,2)为抛物线C上的点,过P(n,2)作倾斜角互补的两直线PS,PT,分别交抛物线C于S,T.求证:直线ST的斜率为定值,并求出这个定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l:4x+3y+10=0,半径为2的圆C与l相切,圆心C在x轴上且在直线l的上方
(1)求圆C的方程;
(2)设过点P(1,1)的直线l1被圆C截得的弦长等于2$\sqrt{3}$,求直线l1的方程;
(3)过点M(1,0)的直线与圆C交于A,B两点(A在x轴上方),问在x轴正半轴上是否存在点N,使得x轴平分∠ANB?若存在,请求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设二次函数y1=a(x-x1)(x-x2)(a≠0,x1≠x2)的图象与一次函数y2=dx+e(d≠0)的图象交于点(x1,0),若函数y=y2+y1的图象与x轴仅有一个交点,则(  )
A.a(x2-x1)=dB.a(x1-x2)=dC.a(x1-x22=dD.a(x1+x22=d

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.关于x的方程x2+(a+1)x+a+b+1=0(a≠0,a、b∈R)的两实根为x1,x2,若0<x1<1<x2<2,则$\frac{b}{a}$的取值范围是(-$\frac{5}{4}$,-$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C同时满足下列三个条件:①与y轴相切;②在直线y=x上截得弦长为$\sqrt{7}$;③圆心在直线x-3y=0上,求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=|x+1|+|x-a|为偶函数,则a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设△ABC的内角A、B、C的对边分别为a、b、c,若a、b、c成公差为2的等差数列,且5sinA=3sinB,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,2)且与2x-y+1=0平行的直线方程为2x-y=0.

查看答案和解析>>

同步练习册答案