精英家教网 > 高中数学 > 题目详情
如图:四棱锥P-ABCD中,底面ABCD是矩形,PA⊥底面ABCD,PA=AB=1,AD=
3
,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°.
分析:(1)建立如图所示空间坐标系,得出P、B、F、D的坐标.设BE=x得E(x,1,0),算出
PE
AF
的坐标,得出
PE
AF
=0
,由此可得无论点E在BC边的何处,都有PE⊥AF;
(2)利用垂直向量数量积为零的方法,算出
m
=(
3
3
,1-
3
3
x,1)
是平面PDE的一个法向量,结合
AP
=(0,0,1)与题中PA与平面PDE所成角,利用空间向量夹角公式建立关于x的方程,解出x的值即可得到PA与平面PDE所成角的大小为45°时,BE的长.
解答:解:(1)分别以AD、AB、AP所在直线为x、y、z轴,建立如图所示空间坐标系
则可得P(0,0,1),B(0,1,0),F(0,
1
2
1
2
),D(
3
,0,0)
  设BE=x,则E(x,1,0)
PE
=(x,1,-1)
PE
AF
=x•0+1×
1
2
+(-1)×
1
2
=0
可得
PE
AF
,即AF⊥PE成立;
(2)求出
PD
=(
3
,0,-1),设平面PDE的一个法向量为
m
=(p,q,1)

m
PD
=
3
p-1=0
m
PE
=px+q-1=0
,得
m
=(
3
3
,1-
3
3
x,1)

∵PA与平面PDE所成角的大小为45°,
AP
=(0,0,1)
∴sin45°=
|
m
AP
|
|m|
|AP|
=
2
2
,得
1
1
3
+(1-
3
3
x)2+1
=
2
2

解之得x=
3
-
2
或x=
3
+
2

∵BE=x∈[0,
3
]

∴BE=
3
-
2
,即当BE等于
3
-
2
时,PA与平面PDE所成角的大小为45°.
点评:本题利用空间坐标系研究了线线垂直和直线与平面所成角大小.着重考查了空间垂直位置关系的判定与证明、直线与平面所成角和向量的夹角公式等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案