精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}满足a1=1,an=logn(n+1)(n≥2,nN*).定义:使乘积a1·a2·a3……ak为正整数的k(kN*)叫做和谐数,则在区间[1,2018]内所有的和谐数的和为

A. 2036 B. 2048 C. 4083 D. 4096

【答案】A

【解析】

先利用对数换底公式a1a2a3…ak化为log2(k+1);然后根据a1a2a3…ak为整数,可得k=2n-1;最后由等比数列前n项和公式解决问题

:∵an=logn(n+1),(n≥2,n∈N*),∴a1a2a3…ak=log2(k+1),

又∵a1a2a3…ak为整数,∵k+12n次幂(n∈N*),即k=2n-1.

∵k∈[1,2018],∴ , ∴所有的“和谐数”的和 .

故答案为:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直三棱柱的所有棱长都相等,且 分别为 的中点.

(1)求证:平面平面

(2)求证: 平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,PD垂直正方形ABCD所在平面,AB2EPB的中点, >

1)建立适当的空间坐标系,求出点E的坐标;

2)在平面PAD内求一点F,使EF⊥平面PCB

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn . 若对n∈N* , 总k∈N* , 使得Sn=ak , 则称数列{an}是“G数列”. (Ⅰ)若数列{an}是等差数列,其首项a1=1,公差d=﹣1.证明:数列{an}是“G数列”;
(Ⅱ)若数列{an}的前n项和Sn=3n(n∈N*),判断数列{an}是否为“G数列”,并说明理由;
(Ⅲ)证明:对任意的等差数列{an},总存在两个“G数列”{bn}和{cn},使得an=bn+cn(n∈N*)成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知MOD函数是一个求余函数,记MOD(m,n)表示m除以n的余数,例如MOD(8,3)=2.如图是某个算法的程序框图,若输入m的值为48时,则输出i的值为(
A.7
B.8
C.9
D.10

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点F为抛物线E:x2=4y的焦点,直线l为准线,C为抛物线上的一点(C在第一象限),以点C为圆心,|CF|为半径的圆与y轴交于D,F两点,且△CDF为正三角形.
(Ⅰ)求圆C的方程;
(Ⅱ)设P为l上任意一点,过P作抛物线x2=4y的切线,切点为A,B,判断直线AB与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=ex+acosx(e为自然对数的底数).
(1)若f(x)在x=0处的切线过点P(1,6),求实数a的值;
(2)当x∈[0, ]时,f(x)≥ax恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC中A,B,C所对的边分别为a,b,c, (1﹣cos2B)=8sinBsinC,A+ =π.
(Ⅰ)求cosB的值;
(Ⅱ)若点D在线段BC上,且BD=6,c=5,求△ADC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】动点分别到两定点连线的斜率的乘积为,的轨迹为曲线分别为曲线的左、右焦点,则下列命题中:

(1)曲线的焦点坐标为;

(2),;

(3),的内切圆圆心在直线;

(4),的最小值为;

其中正确命题的序号是:______________

查看答案和解析>>

同步练习册答案