精英家教网 > 高中数学 > 题目详情
若已知二次函数y=f(x)的图象过原点,且1≤f(-1)≤2,3≤f(1)≤4.求f(-2)的范围.

思路分析:用解方程的思想或待定系数法,视f(-1),f(1)为整体,找到f(-2)=mf(-1)+nf(1),求出m,n,再求f(-2)的范围.

解法一:∵f(x)过原点,∴可设f(x)=ax2+bx.

∴f(-2)=4a-2b=3f(-1)+f(1),且1≤f(-1)≤2,3≤f(1)≤4,

∴6≤f(-2)≤10.

解法二:设f(x)=ax2+bx,则f(1)=a+b,f(-1)=a-b.令m(a+b)+n(a-b)=f(-2)=4a-2b,

∴f(-2)=(a+b)+3(a-b)=f(1)+3f(-1).

∵1≤f(-1)≤2,3≤f(1)≤4,

∴6≤f(-2)≤10.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象为开口向下的抛物线,且对任意x∈R都有f(1-x)=f(1+x).若向量
a
=(
m
,-1
),
b
=(
m
,-2
),则满足不等式f(
a
b
)>f(-1)的m的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象如图所示.
(Ⅰ)求函数f(x)的解析式;
(Ⅱ)求函数f(x)在区间[t,t+2]上的最大值h(t);
(Ⅲ)若g(x)=6lnx+m,问是否存在实数m,使得y=f(x)的图象与y=g(x)的图象有且只有两个不同的交点?若存在,求出m的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象关于直线x=2对称,且在x轴上截得的线段长为2.若f(x)的最小值为-1,求:
(1)函数f(x)的解析式;
(2)函数f(x)在[t,t+1]上的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=f(x)的图象与x轴交于(0,0),(2,0)且有最大值为1.
(1)求y=f(x)的解析式;
(2)设g(x)=|f(x)|,画出g(x)的大致图象,并指出g(x)的单调区间;
(3)若方程g(x)=m恰有四个不同的解,根据图象指出实数m的取值范围.

查看答案和解析>>

同步练习册答案