精英家教网 > 高中数学 > 题目详情

【题目】12个朋友每周聚餐一次,每周他们分成三组,每组4人,不同组坐不同的桌子.若要求这些朋友中任意两个人至少有一次同坐一张桌子,则至少需要周____.

【答案】5

【解析】

首先,就某个人而言,每周与另外3人坐在一起,则至少需要4.其次,12个人两两配对共有对,每张桌子上有对,于是,第一周3×6=18对互相认识.

由于4人坐3桌,在第一周后的每一周,在每张桌子上肯定至少有两人在第一周已坐在一起,也就是新认识的对子最大数目是每周每桌有6-1=5(对),共计15.

因为18+15+15+15=63,所以用4周是不可能两两有一次同坐一桌的,从而知需5.5周是可以办到的,例如,第一周18对,其余4击每周12对,共计18+12×4=66对,下面给出具体分桌方案:

周次 1 2 3

1 1 2 3 4 5 6 9 10 7 8 11 12

2 1 2 5 6 3 4 7 8 9 10 11 12

3 1 2 7 8 3 4 9 10 5 6 11 12

4 1 2 9 10 3 4 11 12 5 6 7 8

5 1 2 11 12 3 4 5 6 7 8 9 10

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】天干地支纪年法,源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、己、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2016年为丙申年,那么到改革开放100年时,即2078年为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

在平面直角坐标系xOy中,点B与点A-1,1)关于原点O对称,P是动点,且直线APBP的斜率之积等于.

(Ⅰ)求动点P的轨迹方程;

(Ⅱ)设直线APBP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的离心率为,以椭圆的左顶点为圆心作圆,设圆与椭圆交于点与点

1)求椭圆的方程;

2)求的最小值,并求此时圆的方程;

3)设点是椭圆上异于,的任意一点,且直线分别与轴交于点为坐标原点,

求证:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场为了了解某日旅游鞋的销售情况,抽取了部分顾客所购鞋的尺寸,将所得数据整理后,画出频率分布直方图如图所示.已知从左到右前3个小组的频率之比为123,第4小组与第5小组的频率分布如图所示,第2小组的频数为10,则第4小组顾客的人数是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】边形玫瑰园的个顶点各栽有1棵红玫瑰,每两棵红玫瑰之间都有一条直小路想通,这些直小路没有出现三线共点的情况——它们把花园分割成许多不重叠的区域(三角形、四边形、……),每块区域都栽有一棵白玫瑰(或黑玫瑰).

(1)求出玫瑰园里玫瑰总棵树的表达式.

(2)花园里能否恰有99棵玫瑰?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温

[10,15)

[15,20)

[20,25)

[25,30)

[30,35)

[35,40)

天数

2

16

36

25

7

4

以最高气温位于各区间的频率估计最高气温位于该区间的概率.

(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;

(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y的所有可能值,并估计Y大于零的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是菱形,侧面底面为线段的中点.

1)求证:平面

2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知 的内切圆切边于点, 而是边上的任意内点.设的内切圆圆心分别是.

(1)求证:∠I1DI2 =90°(即四点共圆);

(2)设四点所在的圆周的半径为, 而的内切圆半径为,试求的取值范围(取遍各种形状的三角形,点取遍边上的每一个内点).

查看答案和解析>>

同步练习册答案