【题目】如图,已知抛物线的焦点是,准线是,抛物线上任意一点到轴的距离比到准线的距离少2.
(1)写出焦点的坐标和准线的方程;
(2)已知点,若过点的直线交抛物线于不同的两点(均与不重合),直线分别交于点,求证:.
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,平面,四边形是菱形,,,且交于点,是上任意一点.
(1)求证;
(2)已知二面角的余弦值为,若为的中点,求与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知中, ,点平面,点在平面的同侧,且在平面上的射影分别为,.
(Ⅰ)求证:平面平面;
(Ⅱ)若是中点,求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知O为坐标原点,抛物线C:y2=8x上一点A到焦点F的距离为6,若点P为抛物线C准线上的动点,则|OP|+|AP|的最小值为( )
A. 4B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的焦点是,准线是,抛物线上任意一点到轴的距离比到准线的距离少2.
(1)写出焦点的坐标和准线的方程;
(2)已知点,若过点的直线交抛物线于不同的两点(均与不重合),直线分别交于点,求证:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线的参数方程是(是参数),以坐标原点为原点, 轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)判断直线与曲线的位置关系;
(2)过直线上的点作曲线的切线,求切线长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了100个蜜柚进行测重,其质量分别在,,,,,(单位:克)中,其频率分布直方图如图所示.
(1)按分层抽样的方法从质量落在,的蜜柚中抽取5个,再从这5个蜜柚中随机抽取2个,求这2个蜜柚质量均小于2000克的概率;
(2)以各组数据的中间数代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有5000个蜜柚等待出售,某电商提出两种收购方案:
A. 所有蜜柚均以40元/千克收购;
B. 低于2250克的蜜柚以60元/个收购,高于或等于2250克的以80元/个收购.
请你通过计算为该村选择收益最好的方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com