精英家教网 > 高中数学 > 题目详情
2.如图,某房地产公司要在一块矩形宽阔地面上开发物业,阴影部分是不能开发的古建筑群,且要求用在一条直线上的栏栅进行隔离,古建筑群的边界为曲线y=1-$\frac{4}{3}$x2的一部分,栏栅与矩形区域边界交于点M,N.则△MON面积的最小值为$\frac{2}{3}$.

分析 设MN为曲线y=1-$\frac{4}{3}$x2的切线,切点为(m,n),由抛物线的方程,求出导数,求得切线的斜率,运用点斜式方程可得切线的方程,分别令x=0,y=0可得M,N的坐标,求得△MNO的面积,再由导数求得单调区间和极小值,也为最小值,即可得到所求值.

解答 解:设MN为曲线y=1-$\frac{4}{3}$x2的切线,切点为(m,n),
可得n=1-$\frac{4}{3}$m2,y=1-$\frac{4}{3}$x2的导数为y′=-$\frac{8}{3}$x,
即有直线MN的方程为y-(1-$\frac{4}{3}$m2)=-$\frac{8}{3}$m(x-m),
令x=0,可得y=1+$\frac{4}{3}$m2,再令y=0,可得x=$\frac{3+4{m}^{2}}{8m}$(m>0),
即有△MON面积为S=$\frac{1}{2}$(1+$\frac{4}{3}$m2)•$\frac{3+4{m}^{2}}{8m}$=$\frac{9+16{m}^{4}+24{m}^{2}}{48m}$,
由S′=$\frac{1}{48}$(-$\frac{9}{{m}^{2}}$+48m2+24)=0,解得m=$\frac{1}{2}$,
当m>$\frac{1}{2}$时,S′>0,函数S递增;当0<m<$\frac{1}{2}$时,S′<0,函数S递减.
即有m=$\frac{1}{2}$处取得最小值,且为$\frac{2}{3}$.
故答案为:$\frac{2}{3}$.

点评 本题考查三角形的面积的最值的求法,注意运用函数的导数,求得切线方程,再由单调性求最值,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.设z=2x+y,其中变量x和y满足条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,求z的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.椭圆C1的中心在坐标原点,两焦点分别为双曲线C2:$\frac{{x}^{2}}{2}$-y2=1的顶点,直x+$\sqrt{2}$y=0与椭圆C1交于A、B两点,且点A的坐标为(-$\sqrt{2}$,1),点P是椭圆C1上异于点A,B的任意一点.
(1)求椭圆C1的标准方程;
(2)求△ABP面积的最大值及此时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知△ABC中,|$\overrightarrow{BC}$|=6,$\overrightarrow{AB}$•$\overrightarrow{AC}$=16.D为边BC的中点.则|$\overrightarrow{AD}$|=$\sqrt{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.数列{an}中,an=2n-1,Sn=a1+a2+…+an,则$\underset{lim}{x→∞}$$\frac{{a}_{n}^{2}}{{S}_{n}}$=4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若f(cosx)=cos3x,那么f(sin70°)的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数y=cosx的定义域为[a,b].值域为[-1,$\frac{\sqrt{2}}{2}$],则b-a的值不可能是(  )
A.$\frac{π}{4}$B.$\frac{3π}{4}$C.πD.$\frac{5π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)对任意实数x,y恒有f(x)+f(y)=f(x+y)+2,当x>0时有f(x)>2,f(3)=5,求不等式f(a-2)<3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设从某地前往火车站,可乘公共汽车,也可乘地铁,若乘公共汽车所需时间(单位:min)X~N(50,102),乘地铁所需时间Y~N(60,42),则
(1)若有70min可用,则乘公共汽车好还是乘地铁好?
(2)由于时间紧迫,决定做出租车去火车站,此时使用手机中打车软件甲,甲软件定位了A公司2辆出租车,B公司4辆出租车,每车被叫中的概率相等,甲软件能叫来两辆车,求A公司出租车被叫来的辆数?的分布列和数学期望E(?).(已知P(μ-3σ<X≤μ+3σ)=0.9974,P(μ-2σ<X≤μ+2σ)=0.9544)

查看答案和解析>>

同步练习册答案