【题目】从含有两件正品a1,a2和一件次品b1的3件产品中每次任取1件,
每次取出后不放回,连续取两次.
(1)求取出的两件产品中恰有一件次品的概率;
(2)如果将“每次取出后不放回”这一条件换成“每次取出后放回”,则取出的两件产品中恰有一件次品的概率是多少?
【答案】(1);(2).
【解析】
试题取出两件产品,按照第一次取出在前,第二次取出在后,构成一个事件,这样可列出每种情况的基本事件总数,然后找出满足条件的基本事件的个数进行计算即可.
试题解析:(1)每次取一件,取后不放回地连续取两次,其一切可能的结果组成的基本事件空间为Ω={(a1,a2),(a1,b1),(a2,a1),(a2,b1),(b1,a1),(b1,a2)},其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品.Ω由6个基本事件组成,而且可以确定这些基本事件的出现是等可能的.用A表示“取出的两件中,恰好有一件次品”这一事件,则A={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.
事件A由4个基本事件组成,所以P(A)==.
(2)有放回地连续取出两件,其一切可能的结果组成的基本事件空间为Ω={(a1,a1),(a1,a2),(a1,b1),(a2,a1),(a2,a2),(a2,b1),(b1,a1),(b1,a2),(b1,b1)},由9个基本事件组成.由于每一件产品被取到的机会均等,因此可以确定这些基本事件的出现是等可能的.用B表示“恰有一件次品”这一事件,则B={(a1,b1),(a2,b1),(b1,a1),(b1,a2)}.
事件B由4个基本事件组成,所以P(A)=.
科目:高中数学 来源: 题型:
【题目】函数的一段图象如图所示.将函数的图象向右平移个单位长度,可得到函数的图象,且图象关于原点对称.
(1)求的解析式并求其单调递增区间;
(2)求实数的最小值,并写出此时的表达式;
(3)在(2)的条件下,设,关于的函数在区间上的最小值为-2,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下利用斜二测画法得到的结论,其中正确的是( )
A.相等的角在直观图中仍相等B.相等的线段在直观图中仍相等
C.平行四边形的直观图是平行四边形D.菱形的直观图是菱形
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某公司为了解所经销商品的使用情况,随机问卷50名使用者,然后根据这50名的问卷评分数据,统计得到如图所示的频率布直方图,其统计数据分组区间为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求频率分布直方图中a的值并估计这50名使用者问卷评分数据的中位数;
(2)从评分在[40,60)的问卷者中,随机抽取2人,求此2人评分都在[50,60)的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将所有平面向量组成的集合记作, 是从到的映射, 记作或, 其中都是实数. 定义映射的模为: 在的条件下的最大值, 记做. 若存在非零向量, 及实数使得, 则称为的一个特征值.
(Ⅰ)若, 求;
(Ⅱ)如果, 计算的特征值, 并求相应的;
(Ⅲ)试找出一个映射, 满足以下两个条件: ①有唯一的特征值, ②. (不需证明)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆C过点M(0,-2)、N(3,1),且圆心C在直线x+2y+1=0上.
(1)求圆C的方程;
(2)设直线ax-y+1=0与圆C交于A,B两点,是否存在实数a,使得过点P(2,0)的直线l垂直平分弦AB?若存在,求出实数a的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com