精英家教网 > 高中数学 > 题目详情
在120°的二面角内,放置一个半径为3的球,该球切二面角的两个半平面于A、B两点,那么这两个切点的球面上的最短距离为(  )
A.πB.
π
3
C.2πD.3A
画出图形,如图,在四边形OMNA中,AM、AN是球的大圆的切线,
∴AM⊥OM,AN⊥ON,
∵∠MAN=120°∴∠MON=60°
∴两切点间的球面距离是
MN
=
π
3
×OM=π

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知直三棱柱A1B1C1-ABC中,D为AB的中点,A1D⊥AB1,且AC=BC,
(1)求证:A1C⊥AB1
(2)若CC1到平面A1ABB1的距离为1,AB1=2
6
A1D=2
3
,求三棱锥A1-ACD的体积;
(3)在(2)的条件下,求点B到平面A1CD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平行六面体ABCD-A1B1C1D1中,以顶点A为端点的三条棱长都为1,且两夹角为60°.
(1)求AC1的长;
(2)求BD1与AC夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

三棱锥D-ABC及其三视图中的主视图和左视图如图所示,则棱BD的长为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,ABCD-A1B1C1D1为正方体,下面结论错误的序号是 ______.
①BD平面CB1D1
②AC1⊥BD;
③AC1⊥平面CB1D1
④异面直线AD与CB1所成角为60°.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:已知四棱锥P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中点,
求证:
(1)PC平面EBD.
(2)平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,四棱锥P-ABCD中,底面ABCD是边长为2的菱形,Q是棱PA上的动点.
(Ⅰ)若Q是PA的中点,求证:PC平面BDQ;
(Ⅱ)若PB=PD,求证:BD⊥CQ;
(Ⅲ)在(Ⅱ)的条件下,若PA=PC,PB=3,∠ABC=60°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥P-ABCD的底面ABCD为直角梯形,PA⊥底面ABCD其中AB⊥AD,CD⊥AD,CD=AD=PA=2AB,E是PC中点.
(1)求证:BE平面PAD;
(2)求异面直线PD与BC所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在正方体ABCD-A1B1C1D1中,与平面AA1D1D平行的平面是______;与平面A1B1C1D1平行的平面是______,与平面BDD1B1平行的棱有______.

查看答案和解析>>

同步练习册答案