精英家教网 > 高中数学 > 题目详情

已知数列中,,若数列满足.
(Ⅰ)证明:数列是等差数列,并写出的通项公式;
(Ⅱ)求数列的通项公式及数列中的最大项与最小项.

(Ⅰ)详见解析;(Ⅱ),最大项为,最小项为.

解析试题分析:(Ⅰ)首先通过已知条件化简变形,凑出这种形式,凑出常数,
就可以证明数列是等差数列,并利用等差数列的通项公式求出通项公式;(Ⅱ)因为有关,所以利用的通项公式求出数列的通项公式,把通项公式看成函数,利用函数图像求最大值和最小值.
试题解析:(Ⅰ)∵,∴,∴
,∴数列是以1为公差的等差数列.          4分
,∴,又∵
是以为首项,为公差的等差中项.
 .       7分
(Ⅱ)∵.
∴作函数的图像如图所示:

∴由图知,在数列中,最大项为,最小项为.        13分
另解:,当时,数列是递减数列,且.
列举.所以在数列中,最大项为,最小项为.
考点:1.等差数列的证明方法;2.利用函数图像求数列的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列,若以为系数的二次方程:都有根满足.
(1)求证:为等比数列
(2)求.
(3)求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若正数项数列的前项和为,首项,点在曲线上.
(1)求
(2)求数列的通项公式
(3)设,表示数列的前项和,若恒成立,求及实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,数列是首项为,公差为的等差数列,且成等比数列.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若
(1)求数列的通项公式:
(2)令
①当为何正整数值时,
②若对一切正整数,总有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,对任意的,都有,且;数列满足.
(Ⅰ)求的值及数列的通项公式;
(Ⅱ)求证:对一切成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列中,,n≥2时,求通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列满足:
(1)若,求数列的通项公式;
(2)若,且
① 记,求证:数列为等差数列;
② 若数列中任意一项的值均未在该数列中重复出现无数次,求首项应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

等差数列中,
(I)求的通项公式;
(II)设,求数列的前n项和.

查看答案和解析>>

同步练习册答案