精英家教网 > 高中数学 > 题目详情
某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是
1
2
.棋盘上标有第0站、第1站、第2站、…、第m(m∈N,m≥100)站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第m-1站(胜利大本营)或第m站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(1)求P0,Pl,P2
(2)写出Pn与Pn-1,pn-2的递推关系;
(3)求证:玩该游戏获胜的概率小于
2
3
分析:(1)结合题设条件能够求出P0=1,P1=
1
2
P2=
1
2
+
1
2
×
1
2
=
3
4

(2)依题意,棋子跳到第n站(2≤n≤m)有两种可能:第一种,棋子先到第n-2站,又掷出反面,其概率为
1
2
Pn-2
;第二种,棋子先到第n-1站,又掷出正面,其概率为
1
2
Pn-1
,由此能够得到Pn与Pn-1,pn-2的递推关系.
(3)由Pn-Pn-1=-(
1
2
Pn-1-
1
2
Pn-2)(2≤n≤m)
,知数列{Pn-Pn-1}(1≤n≤99)是首项为P1-P0=-
1
2
公比为
1
2
的等比数列,由此能证明玩该游戏获胜的概率小于
2
3
解答:(1)解:依题意,得
P0=1,P1=
1
2

P2=
1
2
+
1
2
×
1
2
=
3
4
(3分).
(2)解:依题意,棋子跳到第n站(2≤n≤m)有两种可能:
第一种,棋子先到第n-2站,又掷出反面,其概率为
1
2
Pn-2

第二种,棋子先到第n-1站,又掷出正面,其概率为
1
2
Pn-1

Pn=
1
2
P
 
n-1
+
1
2
P
 
n-2
           (3分)
(3)证明:∵Pn-Pn-1=
1
2
Pn-1+
1
2
Pn-2-Pn-1=-
1
2
Pn-1+
1
2
Pn-2

Pn-Pn-1=-(
1
2
Pn-1-
1
2
Pn-2)(2≤n≤m)
(2分)
可知数列{Pn-Pn-1}(1≤n≤99)是首项为P1-P0=-
1
2
公比为
1
2
的等比数列,
于是有Pm-1=P0+(P1-P0)+(P2-P1)+(P3-P2)+…+(Pm-1-Pm-2
=1+(-
1
2
)+(-
1
2
)2+(-
1
3
)3+…+(-
1
2
)m-1=
2
3
[1-(
1
2
)m]<
2
3

因此,玩该游戏获胜的概率小于
2
3
.(2分)
点评:本题考查概率的应用,是中档题.解题时要认真审题,仔细解答,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是
1
2
.棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(Ⅰ)求:P0,Pl,P2
(Ⅱ)求证:Pn-Pn-1=-
1
2
(Pn-1-Pn-2)
;(n≤99,n∈N)
(Ⅲ)求:玩该游戏获胜的概率.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年四川省绵阳市南山中学高二(下)期中数学试卷(理科)(解析版) 题型:解答题

某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是.棋盘上标有第0站、第1站、第2站、…、第m(m∈N,m≥100)站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第m-1站(胜利大本营)或第m站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(1)求P,Pl,P2
(2)写出Pn与Pn-1,pn-2的递推关系;
(3)求证:玩该游戏获胜的概率小于

查看答案和解析>>

科目:高中数学 来源:2010年江西省南昌十六中高考数学一模试卷(文科)(解析版) 题型:解答题

某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是.棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(Ⅰ)求:P,Pl,P2
(Ⅱ)求证:;(n≤99,n∈N)
(Ⅲ)求:玩该游戏获胜的概率.

查看答案和解析>>

科目:高中数学 来源:2007年江苏省苏州市木渎高级中学高考数学模拟试卷(解析版) 题型:解答题

某人玩硬币走跳棋的游戏,已知硬币出现正、反面的概率都是.棋盘上标有第0站、第1站、第2站、…、第100站.一枚棋子开始在第0站,棋手每掷一次硬币,棋子向前跳动一次,若掷出正面,棋子向前跳一站;若掷出反面,则棋子向前跳两站,直到棋子跳到第99站(胜利大本营)或第100站(失败大本营)时,该游戏结束.设棋子跳到第n站的概率为Pn
(Ⅰ)求:P,Pl,P2
(Ⅱ)求证:;(n≤99,n∈N)
(Ⅲ)求:玩该游戏获胜的概率.

查看答案和解析>>

同步练习册答案