【题目】设数列满足, ,且.
(1)求数列的通项公式;
(2)若表示不超过的最大整数,求的值.
【答案】(1) ;(2)2016.
【解析】试题分析:(1)构造,可证明数列是为首项为公差的等差数列,故 ,根据累加法可得数列的通项公式;(2)由(1)可得,利用裂项相消法可得 , .
试题解析:(1)构造,则,
由题意可得 ,
故数列是4为首项2为公差的等差数列,故 ,故
, , ,
以上个式子相加可得
(2),∴
∴
则 .
【方法点晴】本题主要考查根据递推公式求数列的通项,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.
科目:高中数学 来源: 题型:
【题目】十一黄金小长假期间,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用(人工费,消耗费用等等)。受市场调控,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x元(x为10的正整数倍)。
(1) 设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;
(2) 设宾馆一天的利润为w元,求w与x的函数关系式;
(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)= (a∈R).
(1)试求a的值;
(2)写出f(x)在[0,1]上的解析式;
(3)求f(x)在[0,1]上的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,且直线是曲线的一条切线,求实数的值;
(2)若不等式对任意恒成立,求的取值范围;
(3)若函数有两个极值点,,且,求的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com