精英家教网 > 高中数学 > 题目详情

【题目】设数列满足 ,且.

(1)求数列的通项公式;

(2)若表示不超过的最大整数,求的值.

【答案】(1) ;(2)2016.

【解析】试题分析:1构造可证明数列为首项为公差的等差数列,故 根据累加法可得数列的通项公式;2由(1可得利用裂项相消法可得 .

试题解析(1)构造,则

由题意可得

故数列是4为首项2为公差的等差数列,故 ,故

以上个式子相加可得

(2),∴

.

【方法点晴】本题主要考查根据递推公式求数列的通项,以及裂项相消法求数列的和,属于中档题. 裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1) ;(2) ; (3);(4) ;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】十一黄金小长假期间,某宾馆有50个房间供游客住宿,当每个房间的房价为每天180元时,房间会全部住满。当每个房间每天的房价每增加10元时,就会有一个房间空闲。宾馆需对游客居住的每个房间每天支出20元的各种费用(人工费,消耗费用等等)。受市场调控,每个房间每天的房价不得高于340元。设每个房间的房价每天增加x(x10的正整数倍)

(1) 设一天订住的房间数为y,直接写出yx的函数关系式及自变量x的取值范围;

(2) 设宾馆一天的利润为w元,求wx的函数关系式;

(3) 一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,点分别是椭圆 的左、右焦点,过点且与轴垂直的直线与椭圆交于两点.若为锐角,则该椭圆的离心率的取值范围是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在[-1,1]上的奇函数,当x∈[-1,0]时,函数的解析式为f(x)= (a∈R).

(1)试求a的值;

(2)写出f(x)在[0,1]上的解析式;

(3)求f(x)在[0,1]上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若,且直线是曲线的一条切线,求实数的值;

(2)若不等式对任意恒成立,求的取值范围;

(3)若函数有两个极值点,且,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数只有一个零点,且这个零点为正数,则实数的取值范围是____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数与函数的图像有两个不同的交点 ,且.

(1)求实数的取值范围;

(2)证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四面体ABCD中,OBD的中点,AB=AD=2,.

(1)求证:AO⊥平面BCD

(2)求异面直线ADBC所成角的余弦值的大小;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当a=1时,求:①函数在点P(1,)处的切线方程;②函数的单调区间和极值;

(2)若不等式恒成立,求a的值.

查看答案和解析>>

同步练习册答案