精英家教网 > 高中数学 > 题目详情

【题目】函数的最小值为.

1)求

2)若,求及此时的最大值.

【答案】(1) (2)答案见解析.

【解析】试题分析:(1)利用同角三角函数间的基本关系化简函数解析式后,分三种情况:小于﹣1时大于﹣1而小于1时大于1时,根据二次函数求最小值的方法求出f(x)的最小值g(a)的值即可;(2)把代入到第一问的g(a)的第二和第三个解析式中,求出a的值,代入f(x)中得到f(x)的解析式,利用配方可得f(x)的最大值.

试题解析:

(1)由

.这里

①若则当时,

②若时,

③若则当时,

因此

(2)

①若,则有,矛盾;

②若,则有(舍).

时, 此时

时, 取得最大值为5.

点睛:二次函数在闭区间上必有最大值和最小值,它只能在区间的端点或二次函数图象的顶点处取到;常见题型有:(1)轴固定区间也固定;(2)轴动(轴含参数),区间固定;(3)轴固定,区间动(区间含参数). 找最值的关键是:(1)图象的开口方向;(2)对称轴与区间的位置关系;(3)结合图象及单调性确定函数最值.

型】填空
束】
21

【题目】已知两个不共线的向量的夹角为,且为正实数.

1)若垂直,求

2)若,求的最小值及对应的的值,并指出此时向量的位置关系.

3)若为锐角,对于正实数,关于的方程有两个不同的正实数解,且,求的取值范围.

【答案】(1) ;(2)答案见解析;(3) .

【解析】试题分析:(1)利用+2﹣4垂直,( +2)(﹣4)=0,可得,化简,即可求出tanθ;

(2)利用二次函数的性质,可求|x|的最小值及对应的x的值,利用数量积公式,可确定向量与x的位置关系;

(3)方程|x|=|m|,等价于9x2﹣3cosθx+1﹣9m2=0,利用关于x的方程|x|=|m|有两个不同的正实数解,建立不等式,即可确定结论.

试题解析:

(1)由题意,得

,故

因此,

(2)

故当时, 取得最小值为此时,

故向量垂直.

(3)对方程两边平方,得

设方程①的两个不同正实数解为,则由题意,得

解之,得

则方程①可以化为

由题知

,得,故,且.

,且时, 的取值范围为,且};

,或时, 的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,BC=a,AC=b,且ab是方程的两根,2cos(A+B)=1

(1)求∠C的度数;

(2)求AB的长;

(3)求△ABC的面积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正三棱柱ABC﹣A1B1C1中,点D是BC的中点.

(1)求证:A1C∥平面AB1D;
(2)设M为棱CC1的点,且满足BM⊥B1D,求证:平面AB1D⊥平面ABM.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,椭圆E: (a>b>0)过点( ,1),且与直线 x+2y﹣4=0相切.
(1)求椭圆E的方程;
(2)若椭圆E与x轴交于M、N两点,椭圆E内部的动点P使|PM|、|PO|、|PN|成等比数列,求 的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, ADBC交于点M,设,以为基底表示

【答案】

【解析】试题分析:由A、M、D三点共线,知;由C、M、B三点共线,知

,所以,所以=

试题解析:

因为A、M、D三点共线,所以,即

因为C、M、B三点共线,所以,即

解得,所以

型】解答
束】
20

【题目】函数的最小值为.

1)求

2)若,求及此时的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】化简

1

2

【答案】(1) ;(2) .

【解析】试题分析:(1)切化弦可得三角函数式的值为-1

(2)结合三角函数的性质可得三角函数式的值为

试题解析:

(1)tan70°cos10°( tan20°﹣1)

=cot20°cos10°( ﹣1)

=cot20°cos10°(

=×cos10°×(

=×cos10°×(

=×(﹣

=﹣1

(2)∵(1+tan1°)(1+tan44°)=1+(tan1°+tan44°)+tan1°tan44°

=1+tan(1°+44°)[1﹣tan1°tan44°]+tan1°tan44°=2.

同理可得(1+tan2°)(1+tan43°)

=(1+tan3°)(1+tan42°)

=(1+tan4°)(1+tan41°)=…=2,

=

点睛:三角函数式的化简要遵循“三看”原则:一看角,这是重要一环,通过看角之间的差别与联系,把角进行合理的拆分,从而正确使用公式 ;二看函数名称,看函数名称之间的差异,从而确定使用的公式,常见的有切化弦;三看结构特征,分析结构特征,可以帮助我们找到变形的方向,如遇到分式要通分等.

型】解答
束】
18

【题目】平面内给定三个向量

1)求

2)求满足的实数.

3)若,求实数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足:2a1+22a2+23a3+…+2nan=n(n∈N*),数列{ }的前n项和为Sn , 则S1S2S3…S10=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》是我国古代数学经典名著,它在集合学中的研究比西方早1千年,在《九章算术》中,将四个面均为直角三角形的四面体称为鳖臑,已知某“鳖臑”的三视图如图所示,则该鳖臑的外接球的表面积为(
A.200π
B.50π
C.100π
D. π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义在R上的函数f(x)=ex+mx2﹣m(m>0),当x1+x2=1时,不等式f(x1)+f(0)>f(x2)+f(1)恒成立,则实数x1的取值范围是(
A.(﹣∞,0)
B.
C.
D.(1,+∞)

查看答案和解析>>

同步练习册答案