精英家教网 > 高中数学 > 题目详情

【题目】中,内角所对的边分别是,不等式对一切实数恒成立.

1)求的取值范围;

2)当取最大值,且的周长为时,求面积的最大值,并指出面积取最大值时的形状.(参考知识:已知

【答案】1;(2面积的最大值为,此时为等边三角形.

【解析】

1)分两种情况讨论,在时检验即可,在时,可得出,由此可求得的取值范围;

2)由(1)知,利用余弦定理结合基本不等式可求得的最大值,利用等号成立的条件判断的形状,利用三角形的面积公式可求得面积的最大值.

1,则.

时,,原不等式即为对一切实数不恒成立;

时,应有

解得(舍去).

,则,所以,

因此,的取值范围是

2的最大值为.

由余弦定理得

由基本不等式可得

(当且仅当时,等号成立).

的面积为(当且仅当时,等号成立).

此时,面积的最大值为为等边三角形.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,

Ⅰ)设,求函数的单调区间;

Ⅱ)若,函数,试判断是否存在,使得为函数的极小值点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某旅行社为调查市民喜欢“人文景观”景点是否与年龄有关,随机抽取了50名市民,得到数据如下表:

喜欢

不喜欢

合计

大于40岁

20

5

25

20岁至40岁

10

15

25

合计

30

20

50

(1)判断是否有99.5%的把握认为喜欢“人文景观”景点与年龄有关?保留小数点后3位)

(2)用分层抽样的方法从喜欢“人文景观”景点的市民中随机抽取3人作进一步调查,将这3位市民作为一个样本,从中任选2人,求恰有1位“大于40岁”的市民和1位“20岁至40岁”的市民的概率.

下面的临界值表供参考:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)当时,求函数的曲线上点处的切线方程;

(2)当时,求的单调区间;

(3)若有两个极值点 ,其中,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某单位鼓励员工参加健身运动,推广了一款手机软件,记录每人每天走路消耗的卡路里;软件的测评人员从员工中随机地选取了40人(男女各20人),记录他们某一天消耗的卡路里,并将数据整理如下:

(1)已知某人一天的走路消耗卡路里超过180千卡被评测为“积极型”,否则为“懈怠型”,根据题中数据完成下面的列联表,并据此判断能否有99%以上把握认为“评定类型”与“性别”有关?

(2)若测评人员以这40位员工每日走路所消耗的卡路里的频率分布来估计其所有员工每日走路消耗卡路里的频率分布,现在测评人员从所有员工中任选2人,其中每日走路消耗卡路里不超过120千卡的有人,超过210千卡的有人,设的分布列及数学期望.

附: 其中.

参考数据:

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】经过市场调查,某种商品在销售中有如下关系:x(1≤x≤30,x∈N+)天的销售价格(单位:/)f(x)=x天的销售量(单位:)g(x)=a-x(a为常数),且在第20天该商品的销售收入为1 200(销售收入=销售价格×销售量).

(1)a的值,并求第15天该商品的销售收入;

(2)求在这30天中,该商品日销售收入y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为左、右焦点分别为的直线交椭圆于两点.

(1)若以为直径的动圆内切于圆求椭圆的长轴长;

(2)当时,问在轴上是否存在定点使得为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2019·牡丹江一中]某校从参加高一年级期末考试的学生中抽取60名学生的成绩(均为整数),其成绩的频率分布直方图如图所示,由此估计此次考试成绩的中位数,众数和平均数分别是( )

A. 73.3,75,72 B. 73.3,80,73

C. 70,70,76 D. 70,75,75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在R上的奇函数,且当时,.

1)求函数的解析式;

2)当时,不等式恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案