精英家教网 > 高中数学 > 题目详情

【题目】在等差数列{an}中,a1=3,其前n项和为Sn , 等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+S2=12,q= (Ⅰ)求an与bn
(Ⅱ)设数列{cn}满足cn= ,求{cn}的前n项和Tn

【答案】解:(Ⅰ)设{an}的公差为d, 因为 所以
解得 q=3或q=﹣4(舍),d=3.
故an=3+3(n﹣1)=3n,
(Ⅱ)∵Sn=
∴cn= = = ),
∴Tn= [(1﹣ )+( )+…+( )]= (1﹣ )=
【解析】(Ⅰ)利用待定系数法,建立方程组,求出d,q,即可求an与bn;(Ⅱ)确定数列{cn}的通项,利用裂项法,可求{cn}的前n项和Tn

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 =2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的公差d≠0,其前n项和为Sn , 若S9=99,且a4 , a7 , a12成等比数列. (Ⅰ)求数列{an}的通项公式;
(Ⅱ)若 ,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖冲之之子祖暅是我国南北朝时代伟大的科学家,他在实践的基础上提出了体积计算的原理:“幂势既同,则积不容异”.意思是,如果两个等高的几何体 在同高处截得的截面面积恒等,那么这两个几何体的体积相等.此即祖暅原理.利用这个原理求球的体积时,需要构造一个满足条件的几何体,已知该几何体三视图 如图所示,用一个与该几何体的下底面平行相距为 h(0<h<2) 的平面截该几何体,则截面面积为 ( )


A.
B.
C.
D.π(4-h2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 =1(a>0,b>0)的两条渐近线与抛物线y2=2px(p>0)的准线分别交于O、A、B三点,O为坐标原点.若双曲线的离心率为2,△AOB的面积为 ,则p=(
A.1
B.
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在R上的偶函数f(x)满足f(x)+f(x﹣1)=0,且在[﹣5,﹣4]上是增函数,A,B是锐角三角形的两个内角,则(
A.f(sinA)>f(cosB)
B.f(sinA)<f(cosB)
C.f(sinA)>f(sinB)
D.f(cosA)>f(cosB)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的不等式 (其中a>0).
(1)当a=3时,求不等式的解集;
(2)若不等式有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传统文化就是文明演化而汇集成的一种反映民族特质和风貌的民族文化,是民族历史上各种思想文化、观念形态的总体表征.教育部考试中心确定了2017年普通高考部分学科更注重传统文化考核.某校为了了解高二年级中国数学传统文化选修课的教学效果,进行了一次阶段检测,并从中随机抽取80名同学的成绩,然后就其成绩分为A、B、C、D、E五个等级进行数据统计如下:

成绩

人数

A

9

B

12

C

31

D

22

E

6

根据以上抽样调查数据,视频率为概率.
(1)若该校高二年级共有1000名学生,试估算该校高二年级学生获得成绩为B的人数;
(2)若等级A、B、C、D、E分别对应100分、80分、60分、40分、20分,学校要求“平均分达60分以上”为“教学达标”,请问该校高二年级此阶段教学是否达标?
(3)为更深入了解教学情况,将成绩等级为A、B的学生中,按分层抽样抽取7人,再从中任意抽取3名,求抽到成绩为A的人数X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列 {an} 的前 n 项和为Sn , S1=6,S2=4,Sn>0且S2n , S2n1 , S2n+2成等比数列,S2n1 , S2n+2 , S2n+1成等差数列,则a2016等于(
A.﹣1009
B.﹣1008
C.﹣1007
D.﹣1006

查看答案和解析>>

同步练习册答案