设数列{an}的各项均为正数.若对任意的n∈N*,存在k∈N*,使得=an·an+2k成立,则称数列{an}为“Jk型”数列.
(1)若数列{an}是“J2型”数列,且a2=8,a8=1,求a2n;
(2)若数列{an}既是“J3型”数列,又是“J4型”数列,证明:数列{an}是等比数列.
科目:高中数学 来源: 题型:解答题
已知数列{an}中,a1=1,an+1= (n∈N*).
(1)求证: 数列 {+ }是等比数列,并求数列{an}的通项an
(2)若数列{bn}满足bn=(3n-1)an,数列{bn}的前n项和为Tn,若不等式(-1)nλ<Tn对一切n∈N*恒成立,求λ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
学校餐厅每天供应500名学生用餐,每星期一有A,B两种菜可供选择。调查表明,凡是在这星期一选A菜的,下星期一会有改选B菜;而选B菜的,下星期一会有改选A菜。用分别表示第个星期选A的人数和选B的人数.
⑴试用表示,判断数列是否成等比数列并说明理由;
⑵若第一个星期一选A神菜的有200人,那么第10个星期一选A种菜的大约有多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com