精英家教网 > 高中数学 > 题目详情

【题目】如图,已知圆C的圆心在直线l:y=2x﹣4上,半径为1,点A(0,3). (Ⅰ)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(Ⅱ)若圆C上存在点M,使|MA|=2|MO|(O为坐标原点),求圆心C的横坐标a的取值范围.

【答案】解:(Ⅰ)由 ,得圆心C(3,2),过点A作圆C的切线斜率存在,设A点的圆C的切线的方程:y=kx+3,即kx﹣y+3=0.由题意, ,解得k=0,k= ,所求切线方程为:y=3或3x+4y﹣12=0; (Ⅱ)∵圆C的圆心在直线l:y=2x﹣4上,
∴圆C的方程设为:(x﹣a)2+(y﹣(2a﹣4))2=1,设M(x,y),由|MA|=2|MO|,可得: ,化简可得x2+(y+1)2=4,点M在以D(0,﹣1)为圆心,2为半径的圆上.
由题意,点M(x,y)在圆上,
∴圆C和圆D有公共点,则|2﹣1|≤|CD|≤2+1,
∴1 ≤3,即1 ,5a2﹣12a+8≥0,可得a∈R,由5a2﹣12a≤0,可得0
圆心C的横坐标a的取值范围:
【解析】(Ⅰ)求出圆心C的坐标,设出点A作圆C的切线方程,利用点到直线的距离等于半径,然后求切线的方程;(Ⅱ)设出圆C的方程,点M的坐标,利用|MA|=2|MO|,求出M的轨迹,通过两个圆的位置关系,求圆心C的横坐标a的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】国际奥委会将于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地。目前德国汉堡、美国波士顿等申办城市因市民担心赛事费用超支而相继退出。某机构为调查我国公民对申办奥运会的态度,选了某小区的100位居民调查结果统计如下:

(1)根据已有数据,把表格数据填写完整;

(2)能否在犯错误的概率不超过5%的前提下认为不同年龄与支持申办奥运无关?

(3)已知在被调查的年龄大于50岁的支持者中有5名女性,其中2位是女教师,现从这5名女性中随机抽取3人,求至多有1位教师的概率.

附: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}中,a1,前n项和Sn满足Sn+1-Sn=()n+1(n∈N*).

(1)求数列{an}的通项公式an以及前n项和Sn

(2)若S1,t(S1+S2),3(S2+S3)成等差数列,求实数t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中, 的中点,是棱上的点,.

(1)求证:平面底面

(2)设,若二面角的平面角的大小为,试确定的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足:

(1)求的值;

(2)求证:数列是等比数列;

(3)令),如果对任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数.

1)当时,解不等式

2)若关于的方程的解集中恰好有一个元素,求的取值范围;

(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N* . (Ⅰ)证明:数列{ }是等差数列;
(Ⅱ)设bn=3n ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】先后随机投掷2枚正方体骰子,其中x表示第1枚骰子出现的点数,y表示第2枚骰子出现的点数,
(1)求点P(x,y)在直线y=x﹣1上的概率;
(2)求点P(x,y)满足y2<4x的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设常数a∈R,函数f(x)=(a﹣x)|x|.
(1)若a=1,求f(x)的单调区间;
(2)若f(x)是奇函数,且关于x的不等式mx2+m>f[f(x)]对所有的x∈[﹣2,2]恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案