精英家教网 > 高中数学 > 题目详情
3.已知a,b为正实数,则“ab>1”是“a>1且b>1”的(  )
A.必要不充分条件B.充分不必要条件
C.充分必要条件D.既不充分也不必要条件

分析 直接利用特例法以及充要条件的判断方法,推出选项即可.

解答 解:a>1且b>1可得ab>1,如果ab>1,例如a=10,b=0.5,ab=5>1,显然a>1且b>1你出来.
a,b为正实数,则“ab>1”是“a>1且b>1”的必要不充分条件.
故选:A.

点评 本题考查充要条件的判断以及应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知f(x)=$\frac{sinx+cosx}{1+sinxcosx}$,x∈[0,$\frac{π}{2}$],求f(x)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在空间中,已知动点P的横、竖坐标均为0,则动点P的轨迹为(  )
A.平面xOzB.y轴C.x轴D.以上均不对

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在△ABC中,若AB=1,BC=2,$CA=\sqrt{5}$,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的一条渐近线l与直线l′:x+$\sqrt{3}$y=0垂直,垂足为O,过C的右焦点F分别作l,l′的垂线,垂足分别为N,P,若四边形ONFP的面积为$\sqrt{3}$,则双曲线C的方程为${x^2}-\frac{y^2}{3}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知动圆C与直线x+y+2=0相切于点A(0,-2),圆C被x轴所截得的弦长为2,则满足条件的所有圆C的半径之积是10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数$f(x)=\frac{{{x^4}+k{x^2}+1}}{{{x^4}+{x^2}+1}}\;(k∈R)$,若对任意三个实数a、b、c,均存在一个以f(a)、f(b)、f(c)为三边之长的三角形,则k的取值范围是(  )
A.-2<k<4B.$-\frac{1}{2}<k<4$C.-2<k≤1D.$-\frac{1}{2}<k≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知定义在(-∞,0)∪(0,+∞)上的奇函数f(x)满足f(2)=0,且在(-∞,0)上是增函数;又定义行列式|$\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}$|=a1a4-a2a3; 函数g(θ)=|$\begin{array}{l}{sinθ}&{3-cosθ}\\{m}&{sinθ}\end{array}$|(其中0≤θ≤$\frac{π}{2}$).
(1)证明:函数f(x)在(0,+∞)上也是增函数;
(2)若函数g(θ)的最大值为4,求m的值;
(3)若记集合M={m|任意的0≤θ≤$\frac{π}{2}$,g(θ)>0},N={m|任意的0≤θ≤$\frac{π}{2}$,f[g(θ)]<0},求M∩N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$=(m,1).若向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为$\frac{2π}{3}$,则实数m=(  )
A.-$\sqrt{3}$B.$\sqrt{3}$C.-$\sqrt{3}$或0D.2

查看答案和解析>>

同步练习册答案