如图,在四棱锥中,底面ABCD是正方形,侧棱底面ABCD,,E是PC的中点.
(Ⅰ)证明 平面EDB;
(Ⅱ)求EB与底面ABCD所成的角的正切值.
(Ⅰ)见解析;(Ⅱ).
【解析】
试题分析:(Ⅰ)令AC、BD交于点O,连接OE,证明OE∥AP,即可证明AP∥面BDE;(Ⅱ)先找到直线与平面所成的角,令F是CD中点,又E是PC中点,连结EF,BF,可以证明EF⊥面ABCD,故∠EBF为面BE与面ABCD所成的角,在Rt⊿BEF中求出其正切值.
试题解析:(Ⅰ)令AC、BD交于点O,连接OE,∵O是AC中点,又E是PC中点
∴ OE∥AP 3分
又OE面BDE,AP面BDE 5分
∴AP∥面BDE 6分
(Ⅱ)令F是CD中点,又E是PC中点,连结EF,BF
∴EF∥PD,又PD⊥面ABCD
∴EF⊥面ABCD 8分
∴∠EBF为面BE与面ABCD所成的角.
令PD=CD=2a
则CD=EF=a, BF= 10分
在Rt⊿BEF中,
故BE与面ABCD所成角的正切是. 12分
考点:线面平行的判定、直线与平面所成的角、勾股定理.
科目:高中数学 来源:2010-2011年广西省桂林中学高二下学期期中考试数学 题型:解答题
((本小题满分12分)
如图,在四棱锥中,底面是矩形.已知
.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2012届福建省三明市高三第一学期测试理科数学试卷 题型:解答题
如图,在四棱锥中,底面是菱形,,,,平面,是的中点,是的中点.
(Ⅰ) 求证:∥平面;
(Ⅱ)求证:平面⊥平面;
(Ⅲ)求平面与平面所成的锐二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2013届上海市高二年级期终考试数学 题型:解答题
(本题满分16分)
如图,在四棱锥中,底面是矩形.已知.
(1)证明平面;
(2)求异面直线与所成的角的大小;
(3)求二面角的大小.
查看答案和解析>>
科目:高中数学 来源:2010年江苏省高二下学期期末考试附加卷数学卷 题型:解答题
如图,在四棱锥中,底面是正方形,侧棱,为中点,作交于
(1)求PF:FB的值
(2)求平面与平面所成的锐二面角的正弦值。
查看答案和解析>>
科目:高中数学 来源:2011届浙江省高三6月考前冲刺卷数学理 题型:解答题
(本小题满分14分)
如图,在四棱锥中,底面为平行四边形,平面,在棱上.
(Ⅰ)当时,求证平面
(Ⅱ)当二面角的大小为时,求直线与平面所成角的正弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com