【题目】已知三棱锥(如图一)的平面展开图(如图二)中,为边长等于的正方形,△和△均为正三角形,在三棱锥中,
(1)求证:;
(2)求与平面所成的角的大小;
(3)求二面角的大小.
【答案】(1)证明见解析;(2);(3).
【解析】
(1)取的中点,连,,通过证明平面,可以得到;
(2)根据题意可以证明平面,从而可知就是与平面所成的角;容易计算得到其大小;
(3)取的中点,连,,易证得就是二面角的平面角,然后在直角三角形中求得结果即可.
(1)证明:取的中点,连,,如图:
根据展开图可知,,,所以,,
又,所以平面,
因为平面,所以
(2)根据展开图可知,且,
所以,又,所以,
所以平面,所以就是与平面所成的角,
且,
所以与平面所成的角的大小为.
(3)取的中点,连,,如图:
由(2)可知,由(1)知,且,
所以平面,所以,
根据等腰三角形的性质易得,又,所以平面,
所以,所以就是二面角的平面角,
在直角三角形中,,
在直角三角形中,,
由题知二面角为锐角,所以.
科目:高中数学 来源: 题型:
【题目】2019年4月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市发布高考综合改革实施方案,决定从2018年秋季入学的高中一年级学生开始实施“”高考模式.所谓“”,即“3”是指考生必选语文、数学、外语这三科;“1”是指考生在物理、历史两科中任选一科;“2”是指考生在生物、化学、思想政治、地理四科中任选两科.
(1)若某考生按照“”模式随机选科,求选出的六科中含有“语文,数学,外语,物理,化学”的概率.
(2)新冠疫情期间,为积极应对“”新高考改革,某地高一年级积极开展线上教学活动.教育部门为了解线上教学效果,从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450分.
①考生甲得知他的成绩为270分,考试后不久了解到如下情况:“此次测试平均成绩为171分,351分以上共有57人”,请用你所学的统计知识估计甲能否获得荣誉证书,并说明理由;
②考生丙得知他的实际成绩为430分,而考生乙告诉考生丙:“这次测试平均成绩为201分,351分以上共有57人”,请结合统计学知识帮助丙同学辨别乙同学信息的真伪,并说明理由.
附:;
;
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥,平面,且,底面为直角梯形,,,,,,,、分别为、的中点,平面与的交点为.
(1)求的长度;
(2)求截面的底面所成二面角的大小;
(3)求点到平面的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】焦距为的椭圆(),如果满足“”,则称此椭圆为“等差椭圆”.
(1)如果椭圆()是“等差椭圆”,求的值;
(2)如果椭圆 ()是“等差椭圆”,过作直线与此“等差椭圆”只有一个公共点,求此直线的斜率;
(3)椭圆()是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;
(4)对于焦距为12的“等差椭圆”,点为椭圆短轴的上顶点,为椭圆上异于点的任一点,为关于原点的对称点(也异于),直线分别与轴交于两点,判断以线段为直径的圆是否过定点?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2015秋运城期中)已知函数f(x)=(log2x﹣2)(log4x﹣).
(1)当x∈[1,4]时,求该函数的值域;
(2)若f(x)≤mlog2x对于x∈[4,16]恒成立,求m得取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2﹣(2m+3)x+m2+2=0.
(1)若方程有实数根,求实数m的取值范围;
(2)若方程两实数根分别为x1、x2,且满足x12+x22=31+|x1x2|,求实数m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com