精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥(如图一)的平面展开图(如图二)中,为边长等于的正方形,△和△均为正三角形,在三棱锥中,

1)求证:

2)求与平面所成的角的大小;

3)求二面角的大小.

【答案】1)证明见解析;(2;(3.

【解析】

1)取的中点,连,通过证明平面,可以得到

2)根据题意可以证明平面,从而可知就是与平面所成的角;容易计算得到其大小;

3)取的中点,连,易证得就是二面角的平面角,然后在直角三角形中求得结果即可.

1)证明:取的中点,连,如图:

根据展开图可知,,所以

,所以平面

因为平面,所以

2)根据展开图可知,且

所以,又,所以

所以平面,所以就是与平面所成的角,

所以与平面所成的角的大小为.

3)取的中点,连,如图:

由(2)可知,由(1)知,且

所以平面,所以

根据等腰三角形的性质易得,又,所以平面

所以,所以就是二面角的平面角,

在直角三角形中,

在直角三角形中,

由题知二面角为锐角,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】20194月,河北、辽宁、江苏、福建、湖北、湖南、广东、重庆等8省市发布高考综合改革实施方案,决定从2018年秋季入学的高中一年级学生开始实施高考模式.所谓,即“3”是指考生必选语文、数学、外语这三科;“1”是指考生在物理、历史两科中任选一科;“2”是指考生在生物、化学、思想政治、地理四科中任选两科.

1)若某考生按照模式随机选科,求选出的六科中含有语文,数学,外语,物理,化学的概率.

2)新冠疫情期间,为积极应对新高考改革,某地高一年级积极开展线上教学活动.教育部门为了解线上教学效果,从当地不同层次的学校中抽取高一学生2500名参加语数外的网络测试,并给前400名颁发荣誉证书,假设该次网络测试成绩服从正态分布,且满分为450.

①考生甲得知他的成绩为270分,考试后不久了解到如下情况:此次测试平均成绩为171分,351分以上共有57,请用你所学的统计知识估计甲能否获得荣誉证书,并说明理由;

②考生丙得知他的实际成绩为430分,而考生乙告诉考生丙:这次测试平均成绩为201分,351分以上共有57,请结合统计学知识帮助丙同学辨别乙同学信息的真伪,并说明理由.

附:

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

(1)若函数在区间上单调递减,求实数的取值范围;

(2)函数有几个零点?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ).

(1)如果曲线在点处的切线方程为,求 的值;

(2)若 ,关于的不等式的整数解有且只有一个,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥平面,且,底面为直角梯形,分别为的中点,平面的交点为.

(1)求的长度;

(2)求截面的底面所成二面角的大小;

(3)求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】焦距为的椭圆(),如果满足“”,则称此椭圆为“等差椭圆”.

1)如果椭圆()是“等差椭圆”,求的值;

2)如果椭圆 ()是“等差椭圆”,过作直线与此“等差椭圆”只有一个公共点,求此直线的斜率;

3)椭圆()是“等差椭圆”,如果焦距为12,求此“等差椭圆”的方程;

4)对于焦距为12的“等差椭圆”,点为椭圆短轴的上顶点,为椭圆上异于点的任一点,关于原点的对称点(也异于),直线分别与轴交于两点,判断以线段为直径的圆是否过定点?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015秋运城期中)已知函数f(x)=(log2x﹣2)(log4x﹣).

(1)当x[1,4]时,求该函数的值域;

(2)若f(x)≤mlog2x对于x[4,16]恒成立,求m得取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知关于x的一元二次方程x2﹣(2m+3x+m2+20

1)若方程有实数根,求实数m的取值范围;

2)若方程两实数根分别为x1x2,且满足x12+x2231+|x1x2|,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知方程的四个根组成一个首项为的等差数列,则_____

查看答案和解析>>

同步练习册答案