【题目】如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,PA=AD=AB=2BC,M,N分别为PC,PB的中点. (Ⅰ)求证:PB⊥DM;
(Ⅱ)求CD与平面ADMN所成的角的正弦值.
【答案】解:(Ⅰ)解法1:∵N是PB的中点,PA=AB,∴AN⊥PB. ∵PA⊥平面ABCD,所以AD⊥PA.
又AD⊥AB,PA∩AB=A,∴AD⊥平面PAB,AD⊥PB.
又AD∩AN=A,∴PB⊥平面ADMN.
∵DM平面ADMN,∴PB⊥DM
解法2:如图,以A为坐标原点建立空间直角坐标系A﹣xyz,设BC=1,
可得,A(0,0,0),P(0,0,2),B(2,0,0),C(2,1,0), ,D(0,2,0).
因为 ,所以PB⊥DM.
(Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,∴CD与平面ADMN所成的角为∠BQN.
设BC=1,在Rt△BQN中,则 , ,故 .
所以CD与平面ADMN所成的角的正弦值为 .
解法2:因为 .
所以 PB⊥AD,又PB⊥DM,所以PB⊥平面ADMN,
因此 的余角即是CD与平面ADMN所成的角.
因为 .
所以CD与平面ADMN所成的角的正弦值为
【解析】(Ⅰ)解法1 先由AD⊥PA.AD⊥AB,证出AD⊥平面PAB得出AD⊥PB.又N是PB的中点,PA=AB,得出AN⊥PB.证出PB⊥平面ADMN后,即可证出PB⊥DM. 解法2:如图,以A为坐标原点建立空间直角坐标系A﹣xyz,设BC=1,通过证明 证出PB⊥DM (Ⅱ)解法1:取AD中点Q,连接BQ和NQ,则BQ∥DC,又PB⊥平面ADMN,所以CD与平面ADMN所成的角为∠BQN.在Rt△BQN中求解即可. 解法2,通过 PB⊥平面ADMN,可知 是平面ADMN 的一个法向量, 的余角即是CD与平面ADMN所成的角.
【考点精析】本题主要考查了空间中直线与直线之间的位置关系和直线与平面垂直的判定的相关知识点,需要掌握相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点;一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为 ,且过点D(2,0).
(1)求该椭圆的标准方程;
(2)设点 ,若P是椭圆上的动点,求线段PA的中点M的轨迹方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,,且xyz,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且abc,在不同的方案中,最低的总费用(单位:元)是()
A.ax+by+cz
B.az+by+cx
C.ay+bz+cx
D.ay+bx+cz
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=loga|x+1|(a>0且a≠1),当x∈(0,1)时,恒有f(x)<0成立,则函数g(x)=loga(﹣ x2+ax)的单调递减区间是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了得到函数 ,x∈R的图象,只需把函数y=2sinx,x∈R的图象上所有的点( )
A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍纵坐标不变)
B.向右平移 个单位长度,再把所得各点的横坐标缩短到原来的 倍(纵坐标不变)
C.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
D.向右平移 个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】数列{an}满足a1=1,a2=2,an+2=2an+1﹣an+2. (Ⅰ)设bn=an+1﹣an , 证明{bn}是等差数列;
(Ⅱ)求{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy内,动点P到定点F(﹣1,0)的距离与P到定直线x=﹣4的距离之比为 .
(1)求动点P的轨迹C的方程;
(2)设点A、B是轨迹C上两个动点,直线OA、OB与轨迹C的另一交点分别为A1、B1 , 且直线OA、OB的斜率之积等于- ,问四边形ABA1B1的面积S是否为定值?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com